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Method of Definingthe Tolerances of Storage Ring Lenses 
for Imperfections and Misalignments 

A new method of defining the tolerance of storage 
ring multipole lenses for geometric imperfections and 
misdignmtnts has been developed The method Ls 
based on the estimation of multipole harmonics 
disturbing the beam dynamics most appreciably. 
Amplitudes of these harmonics are derived from the 
measured data on the pole shape or the magnet field of 
the lens by the maximum likelihood method. The PC 
code based on the proposed method was developed 
Results of the code verification arc presented. 

1 INT3ODUcTION 

The magnet field of storage ring lattice elements 
should be highly perfect. For stretchers the 
requirements on field quality are still stricter because of 
the ncccssity of kcepmg specific monant conditions 
during the beam slow extraction [l]. The most critical in 
this respect art the multipole components up to the 
octupole (number of polo paim <5). These demands 
have necessitated the dcvclopmtnt of the method 
estimating of imp&actions and misalignment the 
magnet lenses can tolerate. 

2. TREATMENT OFMULTIPOLE DISTORTIONS. 
For a small lens length (with reference to the orbit 

length), the perturbation in the trar~~erse beam 
dynamics is determined by the longitudinal component 
of the vector magnat potential 4. The pertut%ation in 
the transverse Ham&onion, Hl=H-Ho, is [2]: 

H,= - 
R’ 

-A c:E’p’ ‘s’ 
I’ 4. ! 

where R is the average ring radius ; 
B is the magnet rigidity 
c is the light velocity * 

The peiturbation in the transverse dynamics is 
related to the coefficients of potential expansion around 
the orbit [t] as: 

A,(x,z.s) = 3; b&h:%? 1 .2j 

Every coefficient bnk in this expansion is 
responsible for particular effect Of primrny importance 
for the stretcher are the b40 and bqq coefficients, which 
cause nonlinsarities in the batatron tunas, and tha 

coefficient b30 in the case of the third-order resonant 

slow CXtlWtiOn. The bet&awn trmt shiftx arc 
propoitionai to: 

dnv 
- = T b,((sNW\,,.l ’ 
da21 

and the distortion in tha hexapole harmonic is: 

Hen 4 is the transve~e amplitude, 
w=(s) ix the Floquet function 

Summation is pexfonned over all lattice lercrcs. 
So, the leval of the effect of the multipoles in tha 

magnet potential cxpar6on is determined by the 
particular feature of the lattice. 

Thus, the estimation of tolerable imperfections and 
mkaligntnant is reduced to the calculation of the most 
critical coefficients 4J; in the potential txparsion. 

3. QUAllIUJPOLE LENS IMPERFECTIONS 
Below we consider two types of imperfections in the 

quadrupole lens. They are: 
i)-tha conelike slope of the poles (Fig. 1) 

c 

Fig. 1 The conalike distortion of a quadrupola Ia 
l-the aperture of a lens. 2 - the pole surface. 

ii) the distortion of Ions symmstry of ths plans 
perpendicular to the axis (Fig.2) 

We can sea that thip problem requires 3-dim magnetic 
field representation. Neglecting the beam field and 
assuming large pclmeability of the fans yokas, one can 
describe the field i&de the lens with the scalar 
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Fig.2 ‘Ihe distortion of lens symmetry of the plane 
perpendicular to the taxis 

potential P determined by the Laplace equation This 
potential can be written as [S]: 

I-ir.~,i~r-~d.,i,-.~)i-;:1”1-l0)+d..!r-.-,!1”147!n~>j:-~, 

where (see [4]); 

-1 --I)$, ’ p” 
<jir,-,)=L l.l(Z)"@J 

*.+lu. 1 f n+k ) I 

We have wed the method of least squares to 
calcrdntc U”(s) taking into account that on the pole 
s&ace: 

A! n+knhed~ 
In the c0se (4=4=0, %=O), WC write (4) ps: 

F,$ ~lb-l)rne(iP* 
n’ 

Comparing (2) and (7) one can see that the term 
containing xmzn refers to the L(m+n)-pole lens 

From (7) it follows: 

Cbn,r “~:!x3~np,,)+b “.r”,slrnn~I!=ll:,r,,p,j 

Formally this is the equation of the nonlinear regression: 

r==t’!p. b,!. ~,i, 

IIe $. parameters are to be estimated by tha MLS 

method. 

We have developed a PC code based on the above 
described method. This code is designed to cafcufatc 
the multipole components in the vector potential. using 
the data of pole shape mtawrements. The algorithm ir 
as follows. 

i)- Interactive manual fitting of the shapes by 
choosing the appropriate value of the coefficients b, 

ii)- Auto MLS fitting of the chosen coefficients. 
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Fig.3 The BlJ4MY panel for the case (Fig.2) 

With this code WC have estimated the quadny>ole of 
the PSR-2000 lattice [l]. The lens geom&y was 
distorted us it is shown in Fig.2. The BU4MY panel for 
this case is depicted in Fig.3. The octupole component 
value obtained for the distorted lenr txcee& that of the 
ideal lens by 4 order of magnitude. 

WC consider the lens the poles of which are placed 
on the surface of a cone (see Fig.1). For $-cortzt the 
radius of the aperture r is related to the longitudinal 
coordinate s as: 

r=(l+As)k 1 : I:!) 

It can bc suggested that the potential at the (r&s) 
point is the sum of ‘partial’ potentials Pn. Since this kind 

of perturb&ion does not change the degree of 
symmetry. the equipotential line of Pn at s=comt is the 
curve of order n+ln+3n+.... So, the multipoles, we 
interested in. nm2.3.4 project into multipoles of order 
6,9,12 and higher. Therefore, WC may caicufatc only the 
‘flat’ multipoles. For the fulFilmenr of tha condition (6) it 
is sufficient that; 

n ! ?k*n 
I i(sjn(2k)= WNST, 

44. ’ !rl+l::)7 
1 l.1) 

then: 

I-l(s)“~k~-=II” (n-1+2!:) ! 2 
A yl+Xs FZkJ 8 II-X! 

in-i) ! P 

can be rewritten as 
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obtained. This pemvbation leads the ‘quk octupola’ 
c3 “CC r- 1 3 I = 9 bn 21!1--r~lK~l~~~12,# terms to occur terms in the Hamiltonian (A=x%+xy3) 

(compare to x+-x$ for the true octupoic) 
Zk Zk+n 

APJF?; A r 
~cXs~12*+J 

,. 
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The pole shape dcscribtd by (14) is in good Prc:~,NcwYork 

agreement with the measured one as is shown in Fig.4. 

Fig.4. The comparison of measured equipotential 
surface - 1 and calculated one -2. 

It is of interest to consider the expansion of 
(l+bs)(n+2k) up to second order, because the 
expression for the potential satisfies the Laplace 
equation. 

F’=* l (~l)rne(ip3)(1_~A,+,~A2s2 - L&5-2!: ilr I 
I 

This field is connected with the vector potential 
(Cartesian frame): 

C! _ ~,~z/yi-. 
- ,;2‘ 

v2)(l-2xs+::A’~z)- 

” uz,..4-,4jx2 -- 
4 K2”‘ :, ! ‘2 ) 

So, we have obtained the expression describing the 
conelikt ptmnbation in the Iens geometry. Similcuiy, 
the expression for an arbitrary multipole would be 


