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Abstract

A new method of defining the tolerance of storage
ring multipole lenses for geometric imperfections and
misalignments has been developed. The method is
based on the ecstimation of multipole hamonics
disturbing the beam dynamics most appreciably.
Amplitudes of these harmonics are derived from the
measured data on the pole shape or the magnet field of
the lens by the maximum likelihood method. The PC
code based on the proposed method was developed.
Resuits of the code verfication are presented.

1 INTRODUCTION

The magnet field of storage ring lattice elements
should be highly perfect. For stretchers the
requirements on field quality are still stricter because of
the necessity of keepmg specific resonant conditions
during the beam siow extraction {1]. The most critical in
this respect are the multipole components up to the
octupole (number of pole pairzs <5). These demands
have necessitated the development of the method
estimating of imperfections and misalignment the
muagnet lenses can tolerate.

2. TREATMENT OF MULTIPOLE DISTORTIONS.

For a small lens iength (with reference to the orbit
length), the perturbation tn the transverse beam
dynamics is determined by the longitudinal component
of the vector magnet potential A;. The perturbation in

the ransverse Hamiltonian, Hy=H-H, is [2]}:

Rr3 .
H= cEp A, (i
where R is the average ring radius ;
B is the magnet rigidity
c is the light velocity .
The perturbation in the transverse dynamics is
related to the coefficients of potential expansion around
the orbit (2] as:

oz.s) = Lk 5
Aginzes) = ZX b= 12

Every coefficient by in ths ecxpansion is
responsible for particular effect. Of primary importance
for the stretcher are the bgg and by, coefficients, which

cause nonlinearities in the betatron tunes, and the

coefficient byg in the case of the third-order resonant

slow extraction. The betatron ame shifts are
proportional to:

fo,2 R

— = Th s ! Ty

and the distortion in the hexapole harmonic is:
Ah=Zb (5N, X510
Here a, is the transverse amplitude,
Wy (s) is the Floquet function.
Summation is perfformed over all lattice lenses.
So, the level of the effect of the multipoles in the
muagnet potentinl cxpansion is determined by the
particular feature of the lattice.

Thus, the estimation of tolerable imperfections and
misalignment is reduced to the calculation of the most
criticul cocfficicnts by in the potential expansion.

T

3. QUADRUPOLE LENS DMPERFECTIONS

Below we congider two types of imperfections in the
quadrupole lens. They are:
i)-the conelike slope of the poies (Fig.1)

Fig.1 The conetike distortion of a quadrupole lens
1-the aperture of a lens. 2 - the pole surface.

ii) the distortion of lens symmetry of the plane
perpendiculer to the axis (Fig.2)

Wae can see that this problem requires 3-dim magnetic
ficld representution. Neglecting the beam ficld and
assuming large permeability of the lens yokes, one can
describe the ficld inside the lens with the scalar
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Fig.2 The distortion of lens symmetry of the plane
perpendicular to the axis
potential P determined by the Laplace equation. This
potentiai can be written as {3}
F O, s J:Ednc(m s)casing)td sl s ne) s
where (sce [4]);
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We have used the method of least gquares to
calculate Up(s) taking into account that on the pole

surface:
Fir.p«s)= CONST. o

21 Two-dimensional fiekd
In the case (A=A, =0, B;=0), we write (4) as:

F'=E% g (1), 0 (o)

Comparing (2) and (7) one can see that the term
containing xMzN refers to the 2{(m+n)-polc lens
From (7) it follows:
b W TTasine)th N sinne =00 g
Formally this is the equation of the nonlinear regression:
r=tip,).

T'he by parameters are ta be estimated by the MLS
method.

a2 The code RudMy

We have developed a PC code based on the above
described method, This code is designed to calculate
the muitipole components in the vector potential, using
the data of pole shape measurements. The algorithm is
as follows.

i)- Interactive marmual fitting of the shapes by
choosing the appropriate value of the coefficients by,

i)+ Auto MLS fitting of the chosen coefficients.

least

Fig.3 The BU4MY panel for the case (Fig.2)

With this code we have estimated the quadrupole of
the PSR-2000 lattice [1]. The lens geometry was
distorted as it is shown in Fig.2. The BU4MY punel for
this case is depicted in Fig.3. The octupole component
value obtained for the distorted lens exceeds that of the
ideal lens by 4 orders of magnitude.

23 Conelie lens distorton

We consider the lens the poles of which are placed
on the surface of a cone (see Fig.1). For pmconst the
radius of the aperture r is related to the longitudinal
coordinate £ as:

r=1+xs)R RS

It can be suggested that the potential at the {r.¢.s)
point is the sum of ‘partial’ potentials P,,. Since thiz kind
of perturbation does not change the degree of
symmetry, the equipotential line of Pn at smconst 13 the
curve of order n+2n+3n+.. So, the multipoles, we
interested in, nw2 3.4 project into multipoles of order
6.9,12 and higher. Therefore, we may calculate only the
‘flat' muitipoles. For the fulfilment of the condition (6) it
is sufficient that:

ken
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then:

(m—1+2k)"! . .
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can be rewritten as
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obtained. This perturbation leads the ‘quasi octupole'

2. 2
- . A . . .
dodrasl==0 ZL(l"'“NF\‘kr =1 % terms to occur terms in the Hamiltonian (A=x3y’xy3)
R 1+ hs] (compare to x3y-xy3 for the true octupole)
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The pole shape described by (i4) is in good
agreement with the measured one as is shown in Fig 4.
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Fig.4. The comparison of measured equipotential
surface -1 and calculated one -2.

It s of interest to consider the expansion of

(1*,\5)(’”2“) up to seccond order, because the
expression for the potential satisfies the [ aplace
equation.
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This field it connected with the vector potential
{Cartesian frame):
Lg o = 2_2
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So, we have obtained the expression describing the
conelike perturbation in the lens gcometry. Similarly,
the expression for an arbitrary multipole would be



