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A b&act 
The relativistic motion of a charged particle in the field 
composed by a static, homogeneous magnetic field and a 
linearly frequency shifted (chirped) electromagnetic plane 
wave propagating along the magnetic field is studied. The 
classical relativistic equations of motion are used where 
the radiation reaction is neglected. The analytic solution 
shows that the energy of the particle is systematically in- 
creased due to the frequency shift. This result illustrates 
the theoretical possibility of a new type of laser accelera- 
tor. 

1 INTRODUCTION 

Recently considerable effort have been devoted to the 
search for fundamentally new methods for particle acceler- 
ation (see e.g. [l] and (21). The most promising methods 
proposed rely on (direct or indirect) applications of the 
large electric fields present in high intensity laser beams. 
However, as is well-known [3], the motion of a charged 
particle in a monochromatic plane wave is periodic, and 
the energy gained by the particle in the first half of the 
period of the oscillation is lost in the second half of the 
period. There have been several ways proposed to over- 
come the above difficulty. For reference, we mention some 
of them below. 

l If the dispersion relation of an electromagnetic plane 
wave is suitable modified, for example by propagation 
in a medium or on an interface of two media, then the 
field configuration generated this way can result in a 
monotonic acceleration along the particle’s trajectory. 
Examples for this scheme are the inverse Cherenkov 
accelerator [4], the grating-linac [5] and the thin layer 
dielectric laser accelerator [S]. 

l High-intensity lasers can generate strong secondary 
fields in plasmas, and then the latter fields can accel- 
erate charged particles. This is the principle of the 
beat-wave laser accelerator [7]. 

l In vacuum, if the trajectory of the particle is con- 
strained by the presence of a static (spatially periodic 
or homogeneous) field, then under the joint action of 
this field and of a strong laser field a systematic in- 
crease of the particle’s energy can occur. Examples 
for this scheme are the inverse free electron laser [8] 
and the autoresonance laser accelerator [9]. 

where 0 f t - y, Bc = con&., and ?‘Z,v,Z are mutually 
perpendicular unit vectors defining our Cartesian coordi- 
nate system of reference. In eq. (3) we have introduced w, 
the central frequency of the laser field, and u, which is the 
chirn oarameter. I 1 

In the present paper we give an analytic treatment of the 
relativistic motion of a charged particle moving in vacuum 
in the presence of the field composed by a static homo- 
geneous magnetic field and a linearly frequency shifted 
(chirped) electromagnetic plane wave propagating along 
the magnetic field. The present study was motivated by 
the expectation that the presence of the chirp (which de- 
stroy the periodicity of the wave) can result in an accumu- 
lation of the energy gained by the particle over time inter- 
vals much’larger than the optical period. We note that, 
because of the nonlinear optical processes taking place in 
any laser amplifier the chirp (or in general, phase modu- 
lation) is always present (to some extent) in high power 
lasers. Perhaps the most important application of chirped 
pulses is the CPA (chirped pulse amplification) technique 
invented recently [lo], with the help of which intensities 
up to 10’s W/cm’ have been produced [ll]. 

2 GENERAL EQUATIONS 

Neglecting the radiaton reaction, the four-dimensional 
equations of motion of a particle of charge e and mass 
m read . 

(1) 

duo -= 
dr 

-%iE-, (2) mc 

the four velocity of the moving charge, y = 1 - 7 
( > 

3 
, 

where r is the proper time ,ui = $$ = (c7,7v3 = (14~~17) is 

v2 - 

c is the velocity of light in vacuum , v’ is the ordinary 
three-dimensional velocity. 

The external electric and magnetic fields in equations (1) 
and (2) are composed by a static, homogeneous magnetic 
field and a linearly frequency shifted (chirped), circularly 
polarized electromagnetic plane wave propagating along 
the magnetic field: 

E’ = Eo [&sin(&) - &I’) + ZY cos(w@ - u02)] , (3) 

ii=Tz x .&?sBo, (4) 
-4 
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Fig.1. Poramefric plot of the transversal uelocifies Fig..?. The energy of the particle as function 
of the particle. Here 0 < CV&T 5 7, X=0, 

w/G = 30, &li = u:,,crJ;;Jz. 
of the proper time. Here K--O, w/e = 30, 

EO = E(7 = 0), El = mc2rr/(4cu). 

It can be shown, that in the above described field config- 
uration there is a constant of the motion, i.e. uc - Fzii = 
CIC = constant whose existence plays an important role 
in reducing the solutions to quadratures. Integrating this 
expression over the proper time of the particle the 0 argu- 
ment of the plane wave can be given as a function of the 
proper time: 0 =z or + 6. cy and 6 are constants deter- 
mined by the initial conditions. In the followings, for the 
sake of the simplicity, we set ?=G(T = 0) = rYG(r = 0) = 0 
and 6 = 0. 

Taking into account these considerations, equations (1) 
and (2) can be easily integrated in terms of the well- 

known Fresnel integrals S(z) = fi[sin (y2) dy and 

C(z) = @OS (y2) dy: 

E;cz = CT&sin (W,T + K2) [C(a) + C(K)] 

-CT 
J 

3 03s (WC + K2) [s(a) + S(K)], (5a) 

Then the energy of the particle is given by 

E(r) = mcuo = mc [Tz u‘+ ac] , (6) 

The evolution of the transverse velocity and the particle 
energy can be seen on Figs. 1-2. for K = 0 and 
w/J;; = 30. 

By integrating equations (5a-b-c) the trajectories as 
functions of the proper time can be obtained 

E;cF(T) = rzqT = 0) - &i(T)+ (7a) 

+;T 
r 

; cm (L2) [c(q) + C(L)] + 

+-$ /- 5 sin (L’) [S(q) + S(L)], 

i’qr) = Fy’vr7T = 0) + +(T)+ (7b) 

Fyii = c-r d ;cos (W,T + K”) [c(a) -I- C(K)] - 
+;r J- 5 cos (L2) [S(Q) + S(L)] - 

Cr 
WC /- 

f sin (L’) [C(Q) + C(L)], 

+c-r J- 5 isin (wc7- + K2) [S(Q) + S(K)] , W) Q 
T,??(T) = Zz?i(T)- - 

aJ;; PC) 
..- czu = $T$ (C(Q) + c(K))2 + 

52 T 1 
f&P ; (S(Q) + s(K)>* + u,o, (5c) 

-zi d- -- sin(Q)2 [C(Q) + C(K)] + 
2a& 

Here we have introduced the notations: T z eE 
--? 

and 
mc u 

-h&T2 
J 

;& cw)2 [S(Q) + S(fa , 
KEV e&. are dimensionless constant, w, 5 mc 1s the where L = w 

m 
and * = -L + o&r. These trajectories 

cyclotron frequency and Q(, = -K + u&r. are illustrated on Figs, 3-4. 
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Fig.3. Parametric plot of the transversal 
trajectories of the particle. Here 0 

K=D, w/G = 30, ?=,,7= r:,yc 

If one wishes to parametrize the motion by the time 
measured in the laboratory reference system, then using 
eq.(7c) the time observed in the laboratory reference sys- 
tern can be express in term of the proper time: 

t;flT) t(r) =crr+6+ ---y, 

3 DISCUSSION 

According to the non-periodic behaviour of the Fresnel 
integrals, on the basis of eqs. (5-7) we can state, that 
in contrast to the case of the monochromatic plane wave, 
the motion of the particle is non-periodic and the energy 
of the particle is systematically increased and tends to- 
ward an asymptotic value. This non-periodic behaviour is 
caused by the linear frequency shift of the electromagnetic 
wave and is independent of the magnitude of the static, 
honogeneous magnetic field (similar non-periodicity can 

be found without this magnetic field too). 

Because lim t -+ o. S(t), C(Z) = 4 and because the 
Fresnel integrals have a fast convergence to their asymp- 

totic value, S(z),C( ) z can be approached by their asimp- 
totic value when z > A (depending on the accuracy A 
is typically in the interval of [4,8]). Consequently, if 

r 2 ----t &- &, the particle energy (and of course 

the other characteristics of the motion) can be substituted 
by its asymptotic value, and in this case the frequency shift 
of the electromagnetic plane wave is given by 

Aw&3=~QAfi+;-~ (9) 

6, 

a sqrt(a)T 

Fig.4. The longitudinal trajectory of the particle 
as function of the proper time. Here K=O, 

w/J;; = 30, CzF= r:cY2/(2Cy2fi). 
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From this formula one can see the role of the static, 

homogeneous magnetic field. If this magnatic field is zero 
(B. = 0), then the A w re f q uency shift, which is required to 
reach to the asymptotic regime, is higher than “2. However 
increasing the Bo magnetic field the Aw frequency shift 
can be reduced to an experimentally manageable value. 


