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Abstract 

New aspects of longitudinal dilution of a bunch subjected 
to RF-noise are dealt with. Namely, 

(a) Diffusion coefficient beyond stationary buckets is 
found that allows to treat the outer diffusion in the beam 
halo. So far, a trapped motion inside bucket, mostly in its 
center, has been only in question. 

(b) An “absorbing wall” type of boundary condition is 
imposed at separatrix or at infinity (either may be ade- 
quate), the latter being the coordinate of a physical aper- 
ture. Throughout the region covered, the diffusion coef- 
ficient is essentially nonlinear, nonmonotonic and possi- 
bly diverges near separatrix. Earlier quantitative studies 
of bunch life-times employed its simplified model (linear-, 
quadratic- or power-functions against an action variable). 

(c) Given an intricate diffusion coefficient and two types 
of boundary conditions, the initial-value boundary prob- 
lem is treated numerically (for arbitrarily long bunches) 
via the Finite Element Technique, which allows to esti- 
mate bunch life-times. These emerge from the criteria of 
either bunch quality degradation or of its population loss. 
The latter depend on coordinate at which the boundary 
condition is imposed, whose effect is aa well evaluated. 

1 INTRODUCTION 

Consider a bunched pbeam rotating in a storage ring at a 
constant energy. Let ,7 be an action variable with J= J,ep 
at separatrir. Use is made of the reduced variables 

3’ = J/%7.,,; t’ = t i-J,“(O) da%&: (1) 

with t the time, I2,(J’) the angular synchrotron frequen- 

cy, V,, the net amplitude of external RF-voltage, Pi”‘*) a 
representative value of spectral density P(a+‘)(n) of noise 
voltages. The latter are either AV(“) = AK,,(t) for am- 
plitude, or AV(‘)=V,,lAcp(t) for phase noises. 

A bunch is given by its distribution (Fc)(g’,t’) with 
(. . .) the statistical average over a noise ensemble. Under 
an ergodicity assumption, it coincides with a particular 
bunch-evolution observation smoothed by a proper time- 
averaging. The ‘O’-subscript denotes the mathematical av- 
erage over an angle $ - canonical conjugate of 9. 

For short-correlated stationary noises the evolution of 
(Fu) is known [I, 2, 31 to follow a diffusion equation: 

wb)(9’, f) -- = --& at’ ( 
a(s’)“(F~~J’)) . (2) 

2 DIFFUSION COEFFICIENT 

2.1 Inside the Bucket (3’ 5 I) 

Diffusion coefficient O($‘) is given parametrically via a 
pair D(z), ,7’(z); 0 5 x 5 1. It is a weighted sum over 
the noise harmonics 

J’(x) = E(x) - (1 - z’) K(x); $$ = &. (4) 
s 

Both the parity and strength of the bunch multipole erci- 
tations depend on weight-factors 

W!y)(x) = (1 j, (-1)“)2 (+)’ 

X $&KC-)) . ;;; 

Here cash, sinh are the hyperbolic functions; K(z), E(x) 
are the complete elliptic integrals of modulus x. 

In a White-Noise approximation ‘Pcotr)(n) 21 ‘P(“@) is 
factored out. The series left in Eq.3 is summable: 

d”“)(X) N &d(a.qx), +@) = +W“); (6) 

d(G1’P)(x) = $K(x) y(E(x) - (l-z’)K(x)) 

~&x’(l - x2) (2E(z) - K(x)) 
> 

. (7) 

These Eqs. were first got in refs.[l, 2, 31. For their alter- 
native derivation based on the approach of [4] refer to [5]. 

Fig.1 plots inner functions 2W,(J’), A(.?“). The latter 
diverges logarithmically near separatrix. 

Consider the center of bucket (S’SD.5). Expand J’(x), 
D(z) in Taylor series in x1. Invert these sums to get a 
quadratic approximation: 

~b”)(~‘) N (a) 
(4 

(8) 

given P!“‘=P(a)(2fl,(0)); P!“=P(~)(O,(O)). 
Eq.2 can now be reduced to a closed (ordinary first- 

order differential) equation in terms of the (&)-averaged 



957 

Figure 1: Weight and amplitude functions (inner). Figure 2: Weight and amplitude functions (outer). 

longitudinal emittance F. Its solutions for t’ > 0 are 

+a) 37’ (t’) =: ~(o)exp(+;t~); 

F(‘)(t) =: i + (F(O) - i) exp(-it’) (10) 

--+ F(O) + ;tt 88 ;?7(0),t’ -+ 0. 

These Eqs. describe the onset of a short-bunch quality 
degradation (no loss of beam population yet). The last 
line is a common result for linear oscillations. For more in- 
volved application of this, “moment-of-distribution” tech- 
niques to Eqs.2,8 refer to [3]. The same ref. offers funda- 
mental solutions of Eq.2 with D N .7’ or 3”. Formally, [3] 
puts sero boundary condition at 00, and extends thus far 
the small-amplitude Eqs.8. The approach [2] is to erect 
an ‘absorbing wall” at separatrix, and treat a problem 
resulting for D I- J’“, n < 2 by Fourier-Bessel expansion. 

2.2 Beyond the Buckets (3’ 2 1) 
Let A4 identical bunches be placed in all h stationary buck- 
ets available. Diffusing particles would eventually abandon 
the buckets to continue an orbital motion in their out- 
er vicinity. On averaging over any RF-imposed period, 
distribution of particles in the beam halo can formally be 
interpreted as the outer continuation of (Fo)(J’, 1’). (Nat- 
urally, in case of M > 1 it can well be made of particles 
which have never belonged to the bunch at issue.) 

Evolution of (Fe)(g’> 1, t’) is shown in [5] to be gov- 
erned by the same diffusion Eq.2, but with a new D(J’> 
1). To save the paper length, we list only the formal sub 
stitutions which extend Eqs.3-7 into the (M = h)-beam 
halo region; 1 < x 5 00: 

The far off-set particles ignore Vex, and move as in an 
unbunched beam. It can be shown that the noise heating- 
up of an unbunched beam by A%‘(“?+‘) is indeed described 
by (J’-+ oo)-asymptotes of W(Y); .4(Y). 

3 BOUNDARY CONDITIONS 

Statement of the initial-value diffusion problem is complet- 
ed by imposition of boundary conditions: 

- Loss of particles at some distance J’= gAar: 

(Fo)(x%,, t’) = 0. (12) 

- Continuity of both (Fc)(J’, t’) and of diffusion flux: 

Q(J’,t’) = -D(y) “‘FfJ~g”“” (13) 

at separatrix .7’= 1 whenever J’&,> 1. 
- No source of particles in the bunch center: 

Q(J’= 0,t’) = 0. (14) 

If M < h (like in SppS) a reasonable suggestion is ,7&= 
1 [z]. Particles in the halo rarely reappear near the filled 
buckets. On crossing separatrix they are effectively lost. 

However, if A4 = h a more adequate assumption is 
J-A,+ co. The particles are lost forever at a practical- 
ly infinitely distant physical aperture. 

Both these problems, i.e. for .$‘A,= l;oo, are treated 
numerically. For a (M 5 h)-beam these would yield lower 
and upper bounds for population-loss life-times. 

4 NUMERICAL SOLUTION 

K(x) -+ z-‘K (x-r) ; 4.1 Method 

K(d=) --) x-‘K(d=); (11) A finite-difference ~‘discretisation does not suit. Trou- 

E(x) 
bles arise in computation of Q(s’, t’) at points 9’= 0; 1, 

--) xE (z-r) + (1 - x’)z-‘K (x-r) ; where D = 0;ce. Instead, use is made of the Finite El- 

(1 f (-l)rn)’ --+ (1+ (-l)m)z. ement Method with piece-wise linear basic interpolation 
functions [S]. Th e weak form of the Gale&in’s weighted 

Fig.2 plots the thus got outer functions 2W(J’), A(g’). 
Visually, curves 2W(‘+l 

residual techniques readily accepts natural boundary con- 
merge pair-wise as ]m] 2 4. ditions imposed in terms of the flux values, Eq.13,14. 
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Figure 3: Emittance growth (phase noise). Figure 5: Population-loss life-times (phase noise). 
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Figure 4: Emittance growth (amplitude noise). 

Integration in t’ is performed via the finite-difference 
Crank-Nicolson’s scheme [6]. This ‘L-layer procedure is 
unconditionally stable. For sufficiently small step At’- 
AJ”/D (which is estimated in practice via solution of a 
generalised eigenvalue problem for J-diagonal matrices) a 
numerical solmtion is, as well, free of unwanted oscillations. 

To interpret the solutions as these for gA,-+ 00, the 
t’-integration proceeds until the distribution’s tail touch- 
es some distant, though finite, aperture at gA,,> 1. If 
necessary, thii boundary is shifted further, etc. 

4.2 Results 

Presented here are the results under a White-Noise as- 
sumption, for (a)- and (cp)-noises individually. 

Figs.3,4 show the computed evolutions of the bunch 
emittances 7 (solid lines). They are compared to the 
analytical so’lutions of Eqs.S,lO (dashed lines). The pa- 
rameter plotted is the initial bunch-&e at base J{(O). In- 
jected distribution (Fo)(.7’,0) is combined of 2 Parabolas 
conjugated at )$(O). Each curve is cut off at time tkaw 
until which a more than 0.99-fraction of the initial popula- 
tion is left captured in the bucket, given JA,= 1. Notice 
an accurate fit by Eq.lO-curve for the (cp)-noise, which is 
accounted for by 2-term Taylor expansion in Eq.8. These 
plots estimat.e the life-times related to onset beam-quality 
degradation. 

The further bunch dilution is covered by F&.5,6 which 

Figure 6: Population-loss life-times (amplitude noise). 

show the computed population-loss life-times vs. z:(O) for 
the same (Fo)(fl’,O) injected. Parameter is a fraction of 
population left inside the bucket. Solid lines (parameter 
value at the right), and dashed lines (parameter at the 
left) stand for the boundary problems with JAllll= 1 or co, 
respectively. The more time elapses, the more significant is 
the effect of boundary conditions (i.e., finally, of the beam 
orbital structure) on the life-times. 

The same approach is applied to narrow-band nois- 
es which offer more intricate functions D(3’). The 
feed-backs introduce another complications: D(.7’; (Fu)). 
These are as well treatable numerically. 

The author thanks Drs. V. Balbekov and G. Gurov for 
the instructive discussions on the subject. 
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