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Abstract 

Since it is important for the design of electron-positron 
linear colliders to estimate beam-beam radiation this paper 
introduces a more exact formula for calculating the ndiated 
energy per frequency interval for classical synchrotron 
radiation but also for highly-relativistic beam-beam radiation. 
Reference is made to formulas ocurring in other papers. 

1. INTRODUCI7ON 

During the collision of highly relativistic electrons of an 
electron bunch with an opposite-directional positron bunch 
the electrons (as well as the positrons) are accelerated towards 
the center of the axis of the cylindrical beam and emit 
electromagnetic radiation as a consquence of this acceleration. 
As a result of the ultra-relativistic movement of the colliding 
charges only normal acceleration is of importance for the 
radiation capacity, i.e. the radiation emitted consists mainly of 
synchrotron radiation due to longitudinal acceleration, its 
percentage is the larger the higher the center of mass energy 
is. Therefore it is useful among other things to make a more 
thorough analysis of the classical synchrotron radiation 
formula. 

2. A BRJEF OUTLINE OF THE DERIVATION 
OF A MORE EXACT 

SYNCEWOTRON RADIATION FORMULA 

On the basis of the energy radiated per frequency interval 
(of the photon) and per solid-angle ([l] : 14.67) 
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and using a circular movement (as in [l]) with an angular 
velocity LJk , a more exact analysis of the phase Q in (1) 

results in the term: 
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since here 
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is used and not 

AU other calculation methods are the same as for example 
in [I]. 

The classical formula for the power radiated as a result of 
synchrotron radiation was analyzed more thoroughly and a 
more exact term than indicated in ref. Ill, I21 was found 
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with the Sommerfeld fine-structure constant a,, the photon 
frequency o and the ‘critical freqency’ 

for the angular frequency * 
y*:= Cl -Py)i 

with p being the radius of curvature and (p2~*/c2) = p. 
The difference from the formula indicated in the referen- 

ces comes on the one hand from (3) in the presence of the ex- 
tra factor ((pwk/c)([1+@6&)/~]/2) lR and on the other hand 
from (4) for the critical frequency w, in the extra factor occur- 
ring therein. Both extra factors , of course, approach 1 (in the 
sense of the results presented in the references) with py -9 C 

(butYk --+-I. 
Hence, we are not at variance with the references quoted 

above, but we have a more exact formula in the highly-relati- 
vistic case at our disposal without giving up K + 00, WC+ m 
andw-+c. 

3. FURTHER RESULTS 
IN VIEW OF QUANTUM MECHANICS 

In the same way in this case the fractional energy loss can 
be indicated making use of the Airy function [3], [4] and ta- 
king the extra factor into account as: 
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and with (kn = C(I)), 

l-x2L- Rcw 
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Thus with the electron energy pnc , the electron rest ener- 
gy m:= me? and the force $(caused by the positrons) stan- 
ding vertically on the path 
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was intmluced using 

w -lELc k 
my, PO, 

c . 

(7) 

In the quantum mechanical case and in the case of low 
field variability (small field gradients) the equivalent to the 
equation above (calculated for ‘scalar’ electrons, i.e. solutions 
of the Klein Gordon equation) is: 
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The classical case is resulting from the approximation for 
‘soft photons’ x + 1. The exact application, i.e. the use of 
the Dirac equation leads to [2] 
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4. REMARKS 

The photons coming into being as a result of beam curva- 
ture and whose energy radiated per frequency interval1 is gi- 
ven by the improved formula (3) in the classical case or by 
(10) in the quantum mechanical case are in a position on the 
one hand to use pulse transfer to form pairs with the positrons 
y + e++ e- which can interact with their environment and can 
on the other hand emit compton radiation y + e+ -+ y + ec as 
well as y + e+ --+ +y + y + e+ e.t.c. (using quantum electro- 
dynmic calculation). 

The motivation to publish this paper is to know in how far 
in colliders (e.g. e-e+ colliders) which become more and 
more complicated, in particular in the collision region, the ab- 
ove mentioned extra factor is of importance (e.g. for the pro- 
cesses described above). 

In other words, this paper is only meant to be a basis for 
discussion. Besides that it is clear that the incident electron 
can also interact in terms of quatum electrodynamics with 
one nf the msitrons directlv whereby additional y* (protons) ____ -_ -__ r--m-- I .- - 

and e-e+ pairs can come into being. This shows that the inve- 
stigation of beam-beam interaction or beams&&dung. respec- 
tively, can be of importance for the selection of the collider 
type with referece to the estimation of losses in high energy 
experiments in the final analysis. 
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