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Abstract 

The diffraction problenr of a charge travelling on the axis 
of circular apertures in a periodic array of perfectly con- 
ducting planes L described by a systeni of dual integral 
equations. The systeru can be transfornled into a single 
Redhobn integral equation of the second kind whose free 
tern1 and kernel are continuous functions. This integral 
equation can be solved nunrerically up to sorue frequency 
which increases with 7 but stays always finite. A tenta- 
tive asyruptotic expression is proposed for the longitudinal 
coupling impedance, whose real part decays as ,-‘12; this 
expression seerus to represent qualitatively the general be- 
haviour of the computed impedance. 

1 INTRODUCTION 

Let us consider a particle of charge Q travelling at con- 
stant velocity v’ on the axis of circular holes (radius u) in 
a set of parallel planes (step t). We shall use cylindrical 
coordinates whose i axis passes through the center of the 
apertures and is perpendicular to the plane of the screens. 
We shall assunle that the charge nioves in the positive Z 
direction. One of these plates, we shall call O-plate, coin- 
cides with the reference plane z = 0. 

The charge moving with uniforni velocity in vacuum ra- 
diates only because of the optical inhoniogeneities present 
near its path. The radiation is due to the diffraction of 
the field at the edges of the holes. The field created by 
the charge in the presence of the screens will interact with 
the charge itself so that, together with the phenonlenon 
of radiation, we should find a decrease of the particle ve- 
locity. Such a radiation problenl is very difficult to solve 
and therefore a sinlplifying assumption will be made: we 
shall suppose that the charge nloves at constant velocity 
during its flight. The constant velocity can be iruagined 
as being nlaintained by an external source. The result will 
be a good approxiruation provided that the velocity of the 
charge does not change significantly during the interaction 
with the screen, This assumption can be considered to be 
realistic when dealing with ultrarelativistic charges. 

The problem will be treated as a boundary-value prob- 

lem for Maxwell’s equations: we have the radiation condi- 
tion at infinity, the condition on the tangential component 
of the electric field on the screen, and the edge condition 
for the discontinuity at the edge of the holes (the last con- 
dition will ensure the uniqueness of the solution); therefore 
we shall write a systenl of dual integral equations, involv- 
ing Bessel functions, for the surface current density on 
the screen. By means of an appropriate auxiliary function 
this systenl can be rewritten as a single Fredhohu iutc- 
gral equation of the second kind with a continuous kernel; 
the analytical solution of this new equation is not easy to 
obtain, while a nunlerical treatnlent can give satisfactory 
results, at least for not too high frequencies. 

2 STATEMENT OF THE PROBLEM 

The diffraction probleul is described by the field (&, go) 
travelling with the charge itself and by the radiation 
PR 2) fr on1 the plates, which has a travelling wave char- 
acter. Accordingly, we can represent all the fields and/or 
potentials as the superposition of two terms: a tern1 gener- 
ated by the charge in free space and a tern1 created by the 
presence of the screens, which together nlust satisfy the 
boundary conditions; these are generally of inixed type 
(on the screen and on the hole) and lead to two integral 
equations. We thus write 

J!?*=&+z, 

I?, = if,, + ii. 

It is worth noting that, owing to the syurnletry of the prob 
lem, the induced currents on the screens are directed radi- 
ally and the only components of the field are E,, E,, N,. 

Moreover since the induced currents are orthogonal to the 
edge, the Meixner or edge condition requires that the COIII- 
ponents of the electric field orthogonal to the edge diverge 
as d-‘fa, where d is the distance from the edge. 

We shall consider the distribution of induced currents on 
the plates as the unknown of the problem; the first integral 
equation states that these currents have to be sero in the 



holes. The component of the radiated electric field along [O,a]. Then equation (2) is automatically satisfied, while 
the surface of the plates is set equal to the negative com- equation (1) becomes 
ponent of the primary electric field due to the charge; this 
implies another integral equation where the unknown func- P(T) = T(r) + 1 
tion is the space time transformed current. It has already 

2 ~,‘jc(i~-~l)-G(~+r)lpi~)d~ J 
been showu [l], [2] that this problem can be formulated O<riCl, (6) 
’ as the following system of dual integral equations[3], 

[41 
where the kernel and the free term are continuous func- 
tions, respectively given as 

J 
Y UF(U).7~(UT)dU = 0 0 

O<r<a, (1) 

/” ILF(U)~~S(U, O)Jl(UT)dU = jAKl (tcr) 

G(Y) = ; I 3o [l - N(u)] cos(uy)du, (7) 
0 Ix tl[l - N(u)] 

sin(ur)du, (8) 
7.42 + 62 

J (I 
r > a, (2) where, for brevity, we put 

U 

where K = Jc/@), A = Qk2/(r/3”r) and k, the wave N(u) = 
Jut - k2S(u, 0) . (9) 

number, has to be considered as being complex with a 
small imaginary part, such that Im(k) < 0, The function N(u) has only simple poles; so we have the 

possibility of developing the relevant quantities in a form 

S(v, 0) = 
sinh (Ldm) suitable for numerical calculations. Therefore, making use 

cash (Ld=) - cos (U/P) ’ 
(3) of the expansion [6] 

and F(u) is the Hankel transform of the current density N(u) = ;&, 
1 - (-1)“cos(kL/p) 

flowing on the plate z = 0, that is up - k2 + (rt~/L)~ ’ (10) 
0 

J 
cxz F(u) = rJ,(ur)JF(r; k)dr . (4) ( 

E,, is the Neumann’s symbol), we can compute ’ the kernel 
0 and the free term of the previous integral equation. 

Ail these results can also be used in the case of a single Equation (6) has been solved numerically for different 

screen, where, because we take ImJp ( 0, we have values of the frequency, of y, and of the ratio L/a. Lim- 
itations of computers impose limitations on the highest 

p1; S(u, 0) = 1 for any u frequency which can be computed. The main results can 
be summariced as: 

There are no analytical methods to find an exact solution 
of the system (1) and (2) and direct numerical solution suf- 
fers convergence and stability problems [3]. Nevertheless 
it is possible to reformulate the problem in order to get a 
single Fredholm integral equation of the second kind, in- 
traducing an ad hoc representation of the unknown F(u), 

l the upper frequency increases with 7, but stays always 
finite; 

l the auxiliary function p(r) is a smooth function, even 
when the kernel and the free term have very rapids 
oscillations (at high frequencies). 

so that one of the two equations of the system is automat- 
ically satisfied. 

Finally it can be shown that with expression (5) for 
F(u), the edge condition for E, at r = a- is automati- 

3 AUXILIARY FUNCTION 
. , 

tally satisfied: 

There are many possibilities for choosing an auxiliary func- 4 LONGITUDINAL COUPLING 
tion to reduce a system of dual integral equation to a single IMPEDANCE 
integral equations [3], [4]. A possible choice for obtaining 
a Fredholm integral equation of the second kind with cou- The longitudinal coupling impedance is defined by [7] 

tinuous kernel is to put [5] WY 
E,(r = 0, z; k)e’kL’Pdz, (11) 

F(t+/z-sS(U, 0) 

Z,,(k) = -$ J 0 

_I where E, is the radiated field. Because in our case we 

= Q$ [& - ~*p(z)sin(uz)dr] , (5) have a periodic structure, the last integrand is periodic 
on z with period L. This means that we can redefine an 

where p(z) is some auxiliary function which is continu- impedance per cell as 

ous, together with its first derivative, in the closed interval 

‘It will be assumed in the following that the order of integration in 
Q(k) = -i J 

L 

E,(r=O,z;k)e’E’dz, (12) 
0 

repeated integrals, and the orders of differentiation and integration, 
can be reversed IYI necessary without explicit justification ‘In equstionr (7) and (6), we muat again srrume that Im(k) < 0. 
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where the integral is now taken over a single cell. This 
impedance can he rewritten [z] as a function of the un- 
known F(u), obtaining 

Zll(k) = $ () ‘I 
‘, 

&F(+~~ (13) 
where C,, = 120~R is the characteristic impedance of free 
space. It is worth noting that this expression is formally 
identical to the one found [I], [2] for the case of a single 
screen. 

Equation (13) enables us to compute the impedance in 
terms of the auxiliary function p(z); we get 

Zll (k) 

jkio 2 -. u =---..-. [I - U2N(U) du- 
202 T ,, (u’ + q2 I 

?J(zc)T(z)dz ! (14) 
0 1 

where the first integral can be computed by means of the 
expansion (10) for the function N(u). This is the equation 
we used for numerical calculations. 

5 ASYMPTOTIC EXPANSION 

Using the numerical results we tested the validity of the 
asymptotic expansion 3 (dot-dashed in the figures) 

valid for /3 = 1. The general behaviour of the impedance is 
well reproduced when ka > L/a. The first term of the ex- 
pansion (15) is chosen to be c.onsistent with the asymptotic 
formula given by Gluckstern [8] 

z$-Re [Z,,(k)] x 2 

;zIm [Z,,(k)] M -&, 

whose real part decays as we3j2. 

6 CONCLUSION 

We have considered a point charge travelling on the axis 
of a periodic arra.y of circular holes in perfectly conducting 
infinite planes. The Hankel transform of the induced cur- 
rent in the planes is determined by a set of dual integral 
equations, whose solution is expressed in terms of an aux- 
iliary function which satisfies a Fredholm integral equation 
of the second kind, and which can be computed by numer- 
ical methods. The longitudinal coupling impedance per 
cell of the array is then obtained by integration from the 
auxiliary function. 

The numerical work was carried out on the CERN com- 
puters. It not only provided numerical values for the cou- 
pling impedance per cell as a function of frequency, but 

‘WC are nlso testmg 8 nmrc complete fonuuln valid for all p 

it also showed that the proposed asymptotic formula rep- 
resents qualitatively the general behaviour of the coupling 
impedance, at least when L/a < 1, i.e. when the numerical 
computations can be carried out up to frequencies which 
are high enough to be in the asymptotic region. 
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Figure 1: real part of the impedance 
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Figure 2: imaginary part of 111~ irnpcdance 


