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INTRODUCTION 

The proposed accelerator cavity of the Next Linear 
Collider (NLC) [l] 1s a disk-loaded structure composed of 
200 cells, operating at 11.42 GHz. The proposed mode of 
operation is to accelerate bunches in trains of 10, with a 
bunch spacing of 42 cm. One problem is that one bunch in 
a train can excite transverse wakefields in the accelerator 
cavity which, in turn, can deflect following bunches and 
result in emittance growth. A method of curing this prob- 
lem is to detune the transverse modes of the cavity [2]. 

Beam dynamics simulations for the NLC have shown 
that by keeping the transverse wakefield at the positions of 
the nine trailing bunches at or below 1 MV/nC/m’ we can 
avoid emittance growth [3]. Earlier, approximate calcula- 
tions of the wakefields, which did not include the cell-to- 
cell coupling of the modes, have shown that by the proper 
Gaussian detuning the above level of cancellation can be 
achieved [2,4]. A specific goal of this report is to see if this 
conclusion still holds when coupling is included in the cal- 
culation. Note that in this paper we focus on the modes 
belonging to the first dipole passband, which are the most 
important. A special feature of these modes in the de- 
tuned NLC cavity is that the cell-to-cell coupling changes 
sign somewhere in the middle of the structure. 

We model the detuned cavity by a chain of coupled 
resonant circuits, with each loop of the chain represent- 
ing one cav:lty cell. The constants in the equation we ob- 
tain by fitting to results obtained by TRANSVRS, a com- 
puter program that solves Maxwell’s equations in a peri- 
odic disk-loaded structure [5]. By solving a mat,rix eigen- 
value problem we obtain the frequencies and kick factors 
of the normal modea of the cavity which, in turn, give us 
the wakefield. We then repeat the process using a double 
band of circuits to model the cavity, which duplicates the 
dispersion curves of the lowest two bands more accurately. 

Early examples describing the use of equivalent cir- 
cuits for finding the normal modes of a multi-cell cavity are 
given in Refs. [6-81. As in Ref. [8] our single circuit chain 
couples through mutual inductors. Recently M. Drevlak 
(91 applied equivalent circuits that couple through induc- 
tors or capacitors to an S-band cavity to find the modes 
and the wa.kefields. His circuit models are applicable to 
structures for which the coupling does not change sign 
within the cavity. K. Bane and N. Holtkamp (lo] using 
a more complicated circuit, solve a non-linear eigenvalue 
problem, to find modes of the NLC detuned cavity. A 
preliminary version of the present work was presented by 
R. Miller at Protvino in September 1991 [ll]. Finally Ya- 
mamoto el al. [12] apply direct time domain integration of 
the circuits to find the wakefield of the JLC detuned cavity 
(a similar cavity), confirming the results presented here. 

More details of our results can be found in Ref. [13]. 
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The Uncoupled Calculation of the Wakefield 

The dipole wakefield of a cavity is given by a sum over 
the modes (see, for example, Ref. [14]) 

W(s) = 2 x K, sin y s > 0, (1) 
P 

with K, the kick factor and vp the frequency of the pth 
dipole mode of the structure. Here we assume that the Q’s 
of the modes are sufficiently high so that (for our purposes) 
the damping of the modes can be ignored. Note that for 
a detuned structure the sum in Eq. (l), for small s, can 
be replaced by an integral. If the frequency distribution is 
Gaussian, with rms width o, and average ii then 

T&‘(s) x 2k sin 2xvs~-2(*oY~Ic)2 (2) 
The method that to datz has been used to obtain the 

wakefield of a detuned version of the NLC accelerator cav- 
ity we call the uncoupled solution. According to this cal- 
culation the wakefield of an N-cell detuned structure is 
approximated by [4] 

2mps 
W(s) = $2 I<j”‘sin 7 , 

m 

with N the nurnber of cells. In Eq. (3) Kim and vj”’ 
represent the kick factor and frequency of the synchronous 
component of the first dipole mode for a periodic structure 
with the dimensions of cell m. We expect this approxima- 
tion to be valid for a short distances s, before the cell-to- 
cell coupling becomes important. 

In this paper we limit ourselves to cell geometries with 
four parameters: the iris radius a, the cavity radius b: the 
iris thickness t(=1.46 mm), and the period L(=8.75 mm) 
We detune the structure by varying a and b in such a way 
as to keep the fundamental frequency at 11.42 GHz. To 
find any local property of a detuned cavity we first find that 
property for 7 representative, periodic structures that span 
our possible range in cell dimensions using the computer 
program TRANSVRS. These seven, with labels A-G, vary 
in iris radius from 6.50 mm to 2.75 mm in even steps. We 
then find that local property for any intermediate dimen- 
sion by interpolation. 

For all our simulations we take the distribution in v, 
to be Gaussian, with rms spread u,,/ij, = 2.5 % and av- 
erage 0, = 15.25 GHz, and N to be 200. For these param- 
eters the uncoupled calculation gives the wake envelope 
k(s) shown in Fig. 1. The dashed curve (in all our wake- 
field plots) displays the Gaussian envelope of Eq. (2) for 
comparison. We note that the wake satisfies our criterion 
6 1 MV/nC/m’ at the positions of bunches 2-10. 

SINGLE CHAIN OF COTJPLED CIRCUITS 

We consider the circuit chain shown in Fig. 2. For 
loop m of the circuit we can write 

1 1 c- > --- 
2 Urn 

y2 fm + FL+1 + qn-, = 0 , (4) 
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Fig. 1. The wakefield envelope for the uncoupled 
solution. 

with u the eigenfrequencies of the circuit chain; with I+, 
the cell frequency and n,,,&* the cell-to-cell coupling for 
cell m. The eigenfunctions are given by 

fm=kAKa , (5) 
where, for loop m, i, is the Fourier transform of the cur- 
rent and C,,, is the capacitance. We will allow K,,,& to be 
a positive or negative quantity depending on whet t, er lo- 
tally the cell-to-cell coupling is positive or negative. For N 
circuits Eq. (4) represents a linear, symmetric eigenvalue 
(vm2) eigenfunction (fm) problem of dimension N. Typi- 
cally the cavity has N full cells (m = 1, . , N) with the 
end cells connected to side tubes for which the modes are 
below cut-off. We therefore take as boundary conditions 

fo = fl , fN+l = fN I K+ = Kl , KN++=KN . 

(6) 

Fig. 2. Our single chain circuit model. 

If we substitut,e constant u, = ii and K mhtf = K into 
Eq. (4) we then obtain the periodic solutions: 

1 
f,=fcosm$ and 2=i;z L+KCOSr$ (7) 

We see that u- * is linear with COST. We find the depen- 
dence on geometry of Y, an d tc,,, by fitting to TRANSVRS 
results. The fit, for periodic cavities with dimensions A-G, 
is shown in Fig. 3. Since we fit at the ends of the curves 
the agreement is quite good in the important vicinity of 
the synchronous point. 

The kick factor for mode p is given by 

’ 
(8) 

with ‘pp = 2nvpL/c the phase shift per cell. Doing the nu- 
merical calculations we obtain for the detuned NLC cav- 
ity the wake envelope shown in Fig. 4. We see that for 
0.40 m< 8 <3.80 m the cancellation is slightly better than 
for the uncoupled result. Since the double chain model 
gives similar results we will wait until the next section to 
give more details. 
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Fig. 3. The single circuit chain solutions with 
6 identical cells (the plotting symbols) and the 
TRANSVRS dispersion curves. The dots give the 
speed of light line. 
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Fig. 4. The wakefield envelope for the single 
circuit chain model. 

DOUBLE CHAIN OF COUPLED CIRCUITS 

In an effort to put the difference equations on a more 
physical basis we expand the fields in each cell into a com- 
bination of a TMiic and a TE111 mode, and relate the 
coefficients in adjacent cells to one another by treating the 
iris coupling using the static approximation of Bethe [IS]. 
The details are presented in Ref. [13]. We then obtain 

(X* - X)fm - Ffm+, - Yfm-* = _ -jm+,+ yq---f 2 2 m 1 

_ 
(9) 

(2, - Ml + yjm+l + ~fm-, = 
+4x, 

2 

4x;- 
m+l - 2 m lr 

(10) 
with X z l/v*; with f,,, and f,,, representing respectively 
the TM110 and the TElll part of the mode. The equivalent 
circuit representation of Eqs. (9), (lo), includes two bands, 
with cross-coupling only between adjacent cells. We ob- 
tain the parameters zm, 5,, K,&+, &,+, by fitting to 
TRANSVRS results. Eqs. (9), (lo), represent a symmet- 
ric eigenvalue problem with 2N eigenvalues and 2N eigen- 
functions. At the ends of the structure we take symmetric 
boundary conditions for the f’s and anti-symmetric ones 



for the f^‘s. For a periodic structure we obtain the disper- 
sion relation 

CO8 c$ = 
Kit - (z - X)(i - A) 
(l! - x)i - (i - x)K ’ 

(11) 

When plotted as cosd against A, Eq. (11) is a hyperbola 
with one horizontal asymptote. Figure 5 shows the fit of 
the model to the dispersion curves for geometries A-G. 
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Fig. 5. The double circuit chain solutions with 
6 identical cells (the plotting symbols) and the 
TRANSVRS dispersion curves. The dots give the 
speed of light line. 

We have repeated the calculation for the NLC detuned 
cavity, using the two band model. In our discussion we will 
focus on the properties of the first band modes, since they 
dominate. Most of the modes are localized in the cavity, 
some in only a few cells (as was also found in Ref. [lo]). 
Two example mode patterns as function of cell number m 
are shown in Fig. 6. Figure 7 summarizes all the results. 
We plot the frequency distribution (a), the kick factors (b), 
the product of these two functions (c), which, when shifted, 
gives the Fourier transform of the short range wake. The 
dashes [in (a)-(c)] connect the solution of the uncoupled 
calculation. Note that the beginnings of a second peak 
seen in frame (a) are modes belonging to the second dipole 
passband. In frame (d) we plot the wake. We see again 
that it is acceptable for our needs. We find this result to be 
insensitive to the choice of boundary conditions. Finally, 
in Fig. 8 we show the kick profile V, seen by bunch number 
nb = 2 and nb = 10 as they traverse the 200 cells. The area 
under this curve gives the wakefield seen by the bunch. 
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Fig. 6. MTde patterns for modes 50 ard 150. 
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Fig. 7. Double chain results for the NLC cavity 
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Fig. 8. The kick profile for bunches 2 and 10. 
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