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Abstract 

We present a boundary integral method which allows to 
compute accurately the resonance frequencies of the 
Rhodotron accelerator modified coaxial cavity. Owing to this 
numerical method we can easily find out the geometry which 
optimizs the shunt impedance. 

1. THE RHODOTRON ACCELERATOR 

I .I Use of a coaxial cavity 

The whole characteristics of this new type of recirculating 
electron accelerator suitable for industrial applications are 
given in previous papers [l] [2]. The cavity is a V2 coaxial 
line short-circuited at both ends. Electrons are accelerated 
along diameters in the median plane where the electric field is 
radial and maximum and the magnetic field vanishes. The 
recirculation principle is shown on Figure 1. 

Figure 1: Median section of the accelerator and electron 
trajectory. D: Deflecting magnet C: Accelerating cavity 

L: Magnetic lens G: Electron gun 

I .2 Shunt impedance improvement 

Since in the fundamental resonance mode the magnetic 
field varies as l/r and as a sinus maximum on the end faces, 

the main power losses are located at bolh ends of the inner 
conductor. We expect to reduce losses and thereby improve 
shunt impedance by opening this cylinder out as shown on 
Figure 2. 

We use a boundary integral method to find out the eigen 
frequency and the shunt impedance of this modified coaxial 
cavity. 
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Figure 2: Longitudinal section of the modified cavity 

2. BOUNDARY INTEGRAL METHOD 

2 .I Background 

The modified cavity is axisymmetric, hence the problem is 
reduced to two dimensions. As opposed to finite-element 
methods [3] where fields are calculated on many mesh points 
lying on a longitudinal section, all the unknown fields will bc 
located on the path surrounding this surface. Using Green 
formula reduces the problem to a one-dimension equation. 

2.2 Unknown function 

As shown on Figure 3b an azimuthal magnetic field fulfils 
the boundary conditions even on the biased surface. On 
Figure 3a we see that the electric field can’t be purely radial 
any longer. Hence the fundamental mode we are Lo find out is 
a Transverse Magnetic mode with axial symmetry; Ee, H, and 
H, vanish. We can express the electric field components with 
lhe derivatives of the magnetic field H = He(r,z) which we 
will take as unknown function: 
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Boundary conditions must be satisfied on path C (see 

Figure 4): 
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It may be expanded as a linear combination of TEM and 
TM modes of the coaxial cavity: 
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(8) 
A, , B, , and bn are set by boundary conditions [5]. We 

use a projection to find out the coefficients in the double sum. 
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Figure 4: Integration paths 

Figure 3: a) Electric field lines b) Magnetic field lines 
2.5 Eigenvalue equation 

2.3 Use of Green identity 

Green function associated to the operator is defined by: 
-3 G(r.2)) = 6(r-roj 6(z-zo) 

(4) 
Let us use Green identity 
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(3 
Instead of taking free space Green function [4] we add the 

following boundary condition on the path C’ bounding the 
initial cavity (dashes on Figure 4). 

if.gradG = 0 
(6) 

The field can be expressed at any point of the surface or 
the boundary as a function of the field lying on the biased 
segments only [4] 
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where C(r,z) = 1 on the surface and l/2 on the boundary 

Searching separately symmetric and antisymmetric modes 
allows to reduce the unknown function domain to CD. To 
operate computation we divide this segment into Ns 
subsegments on which H is assumed to be constant. Replacing 
Green function (8) into Equation (7) yields: 
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(9 
The field on each image point (‘i&i) located on CD is 

related to the field on every source point ( rjzj located on 
the same segment. The set of point-matching equations can be 
expressed in the following vector form: 
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(10) 
The frequencies which cancel the determinant Det (I-A) 

correspond to resonances. 

3. RESULTS 

3.1 Comparison with finite-element calculus and 
experiment 

We compared tbe results provided by our code with those 
given by the finite-element code SUPERFISH [3] and with 
the measures performed on our prototype (Ri = 0.1125 m, 
Re = 0.45 m, h = 0.916 m, 2k = 0.298 m, ec = 34.4’, 
f = 178.9 Mhz). 

We varied the number of subsegments Ns and the number 
of modes (Nmax.Nmax) in Green function expression, and 
found out a frequency that we compared with the accurate 
value provided by SUPERFISH; the error is plotted on Figure 
5. We can notice a fast convergence: (Ns = 20. Nmax = 30) 
yields a precisio; better than 0.1%. It should be noted that the 
matrix size is Ns . 
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Figure 5: Accuracy versus number of modes and segments 
0 Ns=5 q Ns=lO * Ns=20 

When evaluating quality factor and shunt impedance the 
error is only a few percent (Q = 36CMl0, Zsh = 14.9 m for a 
copper cavity) 

We also predict with a good accuracy higher-order mode 
frequencies as shown on Table 1 

3.2 Memory space and computing time 

In SUPERFISH [6], if the surface is described by N2 
mesh points the involved memory space is proportional to N3 
whereas computing time varies as N? 

In our code, if there are N subsegments and Nm2 modes, 
the matrix size is N2 only, whereas computing time varies as 
N2 . Nm? 

3.3 Shunt impedance optimization 

The main feature of our code is the capability of defining 
the frequency as a parameter and geometric dimensions as 
variable’s, Hence geometric dimensions corresponding to a 
fixed frequency can be found out very easily since they cancel 
the determinant. When varying these dimensions we could 
find a smooth maximum of shunt impedance (10% 
improvement) around the values Zc = 0.32 m and Oc = 35’. 

TM012 579.8 580.3 

Table 1: Fundamental and higher-order mode frequencies 
given by Superfish, our method and measurements 

CONCLUSION 

This boundary integral method provides accurate results 
within a small memory space. It can easily be turned out into 
a tool for calculation of moditied coaxial cavity dimensions, 
in order to optimize shunt impedance. 
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