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Abstract 

The time-dependent diffraction radiation is treated 
for highly relativistic charges moving past conducting 
obstacles. In two dimensions, where a charge sheet or a line 
charge passes by a wedge, the diffracted fields are known in 
form of a closed analytical expression. Three-dimensional 
cases are not yet solved. In order to understand better 
the fundamental differences, the time-dependent Green’s 
function in free space is used and a Green’s function for a 
line and ring excitation is derived. 

I Introduction 

The electromagnetic interaction between moving charges 
and environment is a complicated mathematical problem. 
Some simple cases can be solved in the frequency domain, 
but there a physical understanding is difficult to be gained. 
A better, but only partly, understanding follows from high 
frequency diffraction models. In these approaches the co- 
travelling fields of the charges are considered as waves scat- 
tered at an inhomogeneity of the surroundings. Thus, at 
least, energy losses can be calculated and a simple model 
of the energy depletion of the original fields can be derived. 
But probably the only way to gain a real insight in the pro- 
cess is in time-domain. Unfortunately this is also the most 
difficult approach. For finite charge dimensions numerical 
solutions are possible with a technique developed for radar 
puls diffraction, called leap-frog met,hod [I]. Analytically 
only very few solved problems are known. One is the dif- 
fraction radiation of fast moving charge sheets passing by 
wedges [2]. This is a two-dimensional problem and a closed 
analytical expression can be derived. In three dimensions 
the only solved problems known to the author are a charge 
passing a pill-box cavity (see e.g. [3]) or a charge crossing 
the gap between two infinite plates [4]. 

This paper shall serve to understand better the fun- 
damental differences between a one-, two- and three- 
dimensional case. For that purpose the time-dependent 
Green’s function in free space is used in order to calculate 
Green’s functions for line sources and ring sources. 

II The Two-Dimensional Problem 

In two dimensions the problem is stated as a charge sheet 
or a line charge passing by a wedge (Fig.1). 
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Figure 1: Charge sheet passing a conducting wedge 

In that case an exact analytical solution exists due to the 
fact that the cylindrical diffraction field propagates undi- 
sturbed (the boundaries are coordinate surfaces) in space 
and time. That means, at any instant the field pattern 
stays constant. Therefore, the space coordinates can be 
normalized with respect to cot and the problem becomes 
time independent. With a suited distortion of the space 
coordinates one can then derive Laplace’s equation with 
given boundary values, since there is a continuous tran- 
sition between the wave front of the diffracted field, the 
source field, the reflected field and the field-free space (see 
Fig.1). The resulting fields are given in a closed analytical 
expression [2]. A snapshot at a fixed time instant looks 
like in the Fig.2. Shown are the electrical field lines for a 
line charge excitation. Since the electric field and the dis- 
placement current are related by a time derivative in the 
same way as line charge and charge sheet excitation are 
related, the field lines are also displacement current lines 
for a charge sheet excitation. 



Figure 2: Lines of constant magnetic field 

III The Time-Dependent Green’s 
Function 

Point Source 

In three dimensions the approach we used above can no 
longer be used. Therefore we try at first to understand the 
differences by studying the time-dependent scalar Green’s 
function which is useful in solving the source problem 

V2$ - -$-g* = -4sq(r, t) . 
0 

The function q describes the source density. Let us as- 
sume vanishing boundary and initial conditions. Then the 
solution of (1) is given by 

$(r,t) = //G(r,t;r’,t’)q(r’,t’)dr’dt’ 

0 V’ 
(2) 

with G being the Green’s function, i.e. the solution of (1) 
with a b-function source 6(r - r’)h(t - 1’). 

In free space the Green’s function is well known (see for 
instance [5]) 

0 for 
G(r,t;r’,t’) = 

R/co > t - t’ 

4 6(R/co - [t - t’l) for R/co < t - t’ 

(3) 
where R = ]r - r’] > 0, t 2 2’. It is a b-function spheri- 
cal shell around the source point expanding with a radial 

velocity cc. Substituting (3) into (2) yields 

v$r, t) = Jq(r’,t - R/co)% . 

V’ 

The effect at r and at a time t is caused by the value of the 
source function q at r’ and at a time t - R/co the mdarded 
time. 

Line Source 

In two-dimensional problems the situation is very different. 
As source we take a uniform line source extending from 
z’ = --00 to z’ = +oo along a line parallel to the z-axis. 
The Green’s function may be easily found by integrating 
the three-dimensional point source, eqn.(3), over all z’ 

WA t; e’, 1’) = J 
O” b[R/co - (1 - t’)] dt, 

R 
--co 

with R2 = ]Q - ~‘1’ + (z - z’)~, which gives 

for p > co(t - t’) 
2co for 

cgt - t/)2 - p2 
p < co(t - 1’) 

(5) 
with p = ]p - p’], p = ze, + ye,. As can be seen the 
impulse is no longer concentrated in a b-function like front 
but spread out over the entire region p < co(t - 2’). Again, 
there is a singularity at p = co(t - t’), but it is very weak 
compared to the &function singularity. The reason is that 
each point of the line source emitts spherical &function 
waves which result in a wake trailing behind the wave front. 
Lines of constant G are cylindrical surfaces (Fig.3). 

Figure 3: Lines of constant G for a line source 

Ring Source 

A third very important case is related to a relativistic point 
charge or a line charge travelling in longitudinal direction. 
The fields are radial, electrostatic fields. When they are 
intercepted by an axissymmetric structure, the diffracted 
fields are constituted from ring-shaped Green’s functions. 
In order to make live easier we restrict ourselves to such 
ring sources in free space. Again they can be gained from 
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eqn.(3) by integrating over 0 5 ‘p’ 5 2a at Q’ 

G(r,t;r’,t’)=2 ‘b(R,.,-[f-fl)q 
I 

(6) 
0 

with R2 = r2 + Q’~ - 2rp’cosy, r being the distance from 
the origin and 7 is the angle between r and 4’. Using the 
relation 

r. p’ = re’cos7 = xp’cosp’ 

we get 
R2 = r2 + Q” - 22~’ cos ‘p’ 

2RdR = 2z$sin p’dp’ = J(~xQ’)~ - (r” + d2 - R2) d$ 

and eqn.(6) becomes after performing the integration 

I 0 for 
co(t - 2’) < R(p’ = 0) or 
co(t - f’) > R(cp’ = n) 

G(r,t; e’, t’) = 4coe’ 
(2xp’)* - (r2 + p” - Cg[t - t’12) 

I elsewhere 

(7) 
Inspecting Fig.4 we can rewrite the radical of eqn.(7) 

(2ZQ’)2 - (T-2 + QQ - ci[t - t’]2)2 = 
= 
= 

I 

2XQ’ + r2 + QR - C;(t - t’)‘] [h&7’ - r2 - QR + c;(t - t’)‘] = 

(z + Q’)2 + 2 - &t - t4)2] [C;(t - t’)* - (CT - Q’)* - i2] = 

= Y2 
t 

- ci(t - ty] [ci(l - P)2 - r’-] 

and obtain 

L 

0 elsewhere 
4coe’ 

G(r,t;r’,t’) = J[co2(t - f’)2 - r”][r: - cz(t - t’)2] 

for 
r- < c~~(t - 2’) < r+ or 
r+ < co(f - t’) < r- 

(8) 
where the quantities are defined by Fig.4. 
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Figure 4: Defining the quantities in eqn.(S) 

Now we find still another situation. Neither is there 
a b-function field impulse like for a point source nor an 
infinitely long trailing wake like for the line source. Every 
point experiences a field pulse of finit,e duration determined 
by 2e’/co. The fields are spread over a lapse of time of 
r-/co < 1 -t’ < r-+/co, where f can be interchanged. This 

is due to the travelling times between observation point 
and different source points of the exciting ring. Note, that, 
once the wave fronts have overlapped a field free region is 
left behind (Fig.5). 

Figure 5: Lines of constant G for a ring-shaped source for 
two time instants 

References 

PI 

PI 

[31 

HI 

[51 

K. Yee,“Numerical solution of initial boundary value 
problems involving Maxwell’s equations in isotropic 
media”, IEEE Trans. Antennas and Propag., ~01.14, 
May 1966, pp. 302-307. 

H.Henke, “Diffraction radiation by a charge sheet mo- 
ving past a conducting wedge”, proceedings of the 
IEEE Particle Accelerator Conference 1991, San Fran- 
cisco. 

G. D6me, “Wake potentials of a relativistic point 
charge crossing a beam-pipe gap: an analytical appro- 
ximation”, IEEE Trans. on Nuclear Science, NS-32, 5, 
1985, pp. 2531-2534 

A.W. Chao and P.L. Morton, “Physical picture of the 
electromagnetic fields between two infinite conducting 
plates produced by a point charge moving at the speed 
of light”, SLAC, Stanford University, report PEP-105, 
1975 

P. M. Morse and H. Feshbach, “Methods of theoretical 
Physics. Part I”, McGraw-Hi11 Book Company, 1953, 
chapter 7.3. 


