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Abstract 

Based on the perturbation method, the resonant frequen- 
cy changes due to apertures on a cavity wall have been 
investigated, and analytical formulae have been derived. 
The dispersion relation of a periodic disk-loaded slow wave 
structure, which relates the group velocity explicitly to the 
shapes and sizes of coupling apertures, is established. Lim- 
ited by the length of the paper the comparisons with the 
unmerical and experimental results have been omitted [l]. 

1 INTRODUCTION 

The aim of this paper is to find out analytically the reso- 
nant frequency changes due to apertures on cavity walls, 
such as apertures for pumping, tuning and coupling etc., 
by the perturbation method. Based on the same method 
the analytical dispersion relation of a periodic disk-loaded 
slow wave structure is established, which relates the group 
velocity and other properties of this slow wave structure to 
the shapes, &es, positions of the coupling apertures and 
cavity geometries. Another important quantity concern- 
ing a cavity in the microwave engineering is the coupling 
coefficient 0 between a cavity and a waveguide. An an- 
alytical formula for this coupling coefficient /3 has been 
established, verified and shows itself in ref. [2]. 

2 PERTURBATION THEORY 

Slater’s perturbation formula [3] which relates the reso- 
nant frequency change of a lossless resonant cavity to the 
perturbation on the boundaries of this cavity, states that 

&I2 = w;t(l+ $ 
/ 

(pi,H2 - q,E2)dv) (1) 
A0 

where wo is the resonant frequency before perturbation, w 
is the resonant frequency after perturbation, U is the total 
energy stored in the cavity, Au is the small volume change 
on the boundaries, and E, H are the electric and magnetic 
fields in this small volume with the values equal to those 
before perturbation. Eq. 1, can be rewriten as follows also 

[41 

w2 = &(I + ;(AW, - AW,)) (2) 

where AW, and AW,,, are the time-average electric and 
magnetic energies stored in the perturbation volume. 

3 FREQUENCYCHANGEDUETO 
APERTURES 

According to ref. [5] it is known that an aperture on the 
cavity wall can be made equivalent to some combination 
of electric and magnetic dipoles (if the dimension of this 
aperture is small compared with the wavelength), such as 

(4) M1 = 3(K(eo) - E(Q)) H1 

~40dfei(l - eg) 

M2 = 3(E(eo) - (1 - eg)K(eo)) H2 (5) 

eo = (1 - Ii/Z:)‘i2 (6) 

where EO is the permittivity of vacuum, ~0 is the perme- 
ability of vacuum, P and Ml, M2 are the electric and mag- 
netic dipole moments, respectively. Eo is the electric field 
perpendicular to the surface of the ellipse. H1 and Hz are 
the magnetic fields parallel to the major and minor axis of 
this ellipse. II and 12 are the lengths of demi- major and 
minor axis, respectively (see Fig. 1). K(Q) and E(eo) are 
complete elliptic integrals of the first and second kinds [6]. 

It should be mentioned that the apertures discussed 
above have no volumes, but only have elliptic surfaces. 
Since the apertures on the cavity wall can be equivalent 
to electric and magnetic dipoles as expressed in eqs. 3-5, 
AW, and AW,,, can be calculated by imagining that these 
electric and magnetic dipoles interact with applided driv- 
ing electromagnetic fields. According to Bethe’s theory 
[7], these driving fields in the center of the aperture are 
the halves of those values of EO and Ho,~ which are the 
electric and magnetic fields at the center of the aperture 
before being perturbed. Remembering to take the time- 
average of the energy changes due to these electromagnetic 
dipoles, we have 

*r;7(1 - ei) 

12E(eo) 
eoE; = -AW, (7) 

AU,,, = AU,,,,, + AU,,,,, = -AW,,, (8) 

Aurn,~ = 2 &.H\= p0Lo*lTei 
12(K(e0) - E(e0)) 

H: (9) 

ACn72 = 
~d~e~( 1 - ei) 

lZ(E(eo) - (1 - e$)K(eo)) 
Hz’ 

(10) 



where E’ = Eo/2, Ii:,, = H&2, Eo and Hr,s are the 
electric and magnetic fields at the center of the aperture 
before being perturbed. By combining eqs. 2, and 7-10 we 
get the resonant frequency change due to an open aper- 
ture on the cavity wall. Sometimes a cavity is perturbed 
as shown in Fig. (2), where the frequency change also de- 
pends on the distance I as in the case of a frequency tuner. 
If the hole is a circular one, the frequency change will be 

w2 = wi(l+ ~(l-e-2a~z)-~(~-e-zoaz)) (11) 

with AU,, AU,,, as expressed in eqs. 7 and 8 z > 0 and 
with ai, as expressed as follows: 

a1 = ?((&2 - l)‘/s,az = 2$-)2 - 1)‘/2 (12) 

where X is the wavelength in free space, X,1 = 2.62~ is 
the cutoff wavelength of Ti&r mode wave, XC2 = 3.41a 
is that of TEir mode wave, and a is the radius of the 
circular pipe. The necessity of there existing two factors 
(1 - e-2alr) and (1 - e-2aar) in eq. 11 can be proved easily 
and it is omitted here. To show the applications of eq. 11, 
two examples will be given here. First example is shown in 
Fig. (2a) where a circular aperture is opened. Since there 
is almost no magnetic field where the aperture is located, 
eq. 11 reduce to 

w2 = wZ(l + yy1 - e--2oq) 

or 

6w = wrJ------ a3;gE” (1 _ e-2a1m) 

It is known consequently that 

d&J a3eoalEge-2a,r 
dt=wo 3u 

03) 

The second example is shown in Fig. (2b). Since there 
is no electric field where the circular aperture is located, 
eq. 11 reduces to 

w2 = wi(l - ?A!$(1 - e-2ao7) (16) 

or 

6w = -wo------ a3PouH,z (1 _ e-2a?r) 

and consequently 

dw 
- = -2wo 
dz 

a3~~2H,!e-2a2, 
3u (18) 

Numerical results from Superfish have been compared with 
the theoretical results calculated by eqs. 14 and 15, and the 
LAL (Orsay) RF Gun [8][9] experimental results [lo] have 
been compared with those calculated by eq. 17 and 18. 

4 FREQUENCY CHANGE DUE TO 
COUPLING BETWEEN CAVITIES 

Now we consider two cavities coupled by an aperture on 
the common wall. Aiming at explaining physics, a simple 
case is dicussed and shown in Fig. (3a), where the cou- 
pling is conducted only by a circular aperture (an electric 
dipole). Since there is coupling between the two cavities, 
the energy change in the first cavity due to electric dipole 
wiIl be as follows (assuming that the electromagnetic fields 
in both cavities oscilate with the same frequency): 

AW,,, = ;Pl .E;-;P1.E; (19) 

where PI is the dipole moment corresponding to first cav- 
ity, E; = 1/2E1, Eh is the electric field of the second 
cavity seen by the electric dipole of the first cavity, with 
E’ = 1/2e+ldE2, 
w il 

d is the thickness of the common walI 
ere the aperture is located, and El, EZ are the electric 

fields at the center of the aperture in the two cavities when 
the aperture is replaced by an ideal metallic boundary. 
Therefore according to eq. 2, one can get the frequency 
change of the first cavity as 

w, - wi,Jl - F) a- 

= Wo 1 
2, (l+ 3a3coE5EL - ~a3eoEl.$Ze-(lld) 

= Wo 1 
a, p + 5 “;’ : 3 a3e0- - -a co 

EIE;~o~~e-“‘d) (20) 

where 8 is the phase difference between El and E2. As 
for the second cavity one could follow the same procedure 
accordingly. If the two cavities are coupled magnetically 
through a circular aperture as shown in Fig. (3b), the 

,frequency change of the first cavity will be expressed as 
follows: 

2AU, 
w; = wi,r(1+ - 

u ) 

= Wo 1 
2, (I- ;a3mHl;Hl + ga31ro u 

Hl * H2 e-ald) 

= Wo 1 
2, (1 - ia + ;a3hHlH;=os8e-“‘d) (21) 

where 0 is the phase difference between H1 and Ha. If this 
coupling aperture is located where electric and magnetic 
fields both are not vanishing, the total frequency change 
caused by electric and magnetic dipoles could be evaluated 
by combining eqs. 20 and 21 according to eq. 2. 

5 DISPERSION RELATION OF 
SLOW WAVE STRUCTURE 

As a practical application of eqs. 20 and 21 we consider 
a periodic disc-loaded accelerator structure as shown in 
Fig. (4). According to Floquet’s theorem it is known that 
0 = pOD, where p0 is the foundamental wave number, 
and D is the space periodicity of the periodic structure. 
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We consider first the case of electrical coupling structure. 
According to eq. 20 we have 

N E2 N 
w2 = wZ(l + -lz3co~ - -ca3Eo ElEzco@oD) e-a,d 

3 u 3 u 1 

(22) 
where N is the number of the coupling apertures on the 
wall of each cavity (assuming that the physicel conditions 

for these N apertures are same). If pOD = r/2 (x/2 mode), 
then 

2 E2 
UT/2 = wi(l+ $&+) 

Usually ] (wo - w,,~)/w,,~ I<< 0, eq. 22 can be rewritten 
as 

J = w;,2(l - $z3,, ElEzco@oD) e-a,d u 1 (24) 

It is very clear to see that eq. 14 is the dispersion relation 
of an electrically coupled periodic slow wave structure, and 
by comparing with that obtained from an equivalent cir- 
cuit as shown in Fig. (4) [ll], 

w2 = ~;,~(l - kcos(&,D)) (25) 

where k = 2C/(2C + C’), we know that the coupling con- 

stant k in the classical dispersion relation, eq. (31), can 
be represented as follows: 

N 
k = -a’+---e El& -old 

3 II 

The group velocity of this electrically coupled slow wave 
structure is 

dw N3 
ug = dpo = w,/2Ta co 

=eDEf~i@oD)e-a,d 

u 
(27) 

where a, = ]E2/Er], 1 2 a, > 0, and in an normal accel- 
erator structure 0, = 1. 

If magnetic coupling is chosen as shown in Fig. (5), 
started from eq. 21 we get the dispersion relation of mag- 
netic coupling structure: 

w2 = w&(1 + +%o 
Hlffzco+oD) e-a2d 

u 1 (28) 

where 
2 

w,/2 = (29) 

Compared with the equivslent circuit shown in Fig. (5) 

and the classical dispersion relation [ll] 

WC/2 

w2 = (1 - kcoa(&$)) 
= ~:,~(l+ kcoa(PoD)) (30) 

where k = M/L, we know that 

k = $3p,,Fe Hlff2 -apd (31) 

The group velocity of this magnetically coupled slow wave 
structure is 

dw N3 
ug = -& = -w,/2-p pQ 

=,Dfffsin(PoD) e-02d 

u (32) 

where a, = I~2IHlI,1 > Qm > 0, and in an normal 
accelerator structure Q, = 1. 

If the aperture is an ellipse rather than a circle general 
formulae can be obtained by using eqs. 3-5 [l]. 
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