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Abstract 

Stochastic cooling for a bunched beam of hadrons stored 
in an accelerator with a double rf system of two different 
frequencies has been investigated. The double rf system 
broadens the spread in synchrotron-oscillation frequency 
of the particles when they mostly oscillate near the center 
of the rf bucket. Compared with the case of a single rf 
system, the reduction rates of the bunch dimensions are 
significantly incrl:ased. When the rf voltage is raised, the 
reduction rate, instead of decreasing linearly, now is indc- 
pendent of the ratio of Ihe bunch area to the bucket, area. 

v = peak voltage of the fundamental rf system 
Lzc = peak voltage of the higher-frequency rf system 
4, = the stable phase angle relative to the fundamental 

rf wave-form 
$zs = the stable phase angle relative to the higher fre- 

quency wave-form. 
In the case of stochastic cooling, the particle beam is 
typically stored in the accelerator without acceleration. 
Besides, the first and second derivatives of V(4) should 
vanish’ at the center of the bunch to avoid having other 
stability regions nearby. These conditions imply 

On the other hand, the spread in synchrotron-oscillation 
frequency becomes small with the double rf system, if 
the longitudinal oscillation amplitudes of the particles are 
comparable to the dimension of the rf bucket. Conse- 
quently, stochastic cooling is less effective when the bunch 
area is close to the bucket area. 

Assuming (p. = 0, and m& = n, the longitudinal motion 
of the particle can be described by an Harrultonian 

1 INTRODUCTION 

~(~,W;t)=CwW2+~(i-cCWd)-~(1- co4 md). 

(3) 
Here, 

Previous studies’ indicate that stochastic cooling for a 
bunched beam of hadrons in a single-frequency rf system 
becomes difficult when the longitudinal bunch area is small 
compared with the area of the stable motion. When the 
bunch area is small, the spread in synchrotron-oscillation 
frequency is small compared with the average oscillation 
frequency. Compared with the coasting beam of similar 
line density and ,momentum spread, the Schottky noise in 
the bunched beam is higher due to the relatively higher 
particle density in frequency domain. 

h=i& 
cw = 2E/32 ’ 

w = it!..!? 
hwo ’ 

c d _ qeo 
nh 

Using a seconclary rf system with higher frequency sig- 
nificantly broadens the spread in synchrotron-oscillation 
frequency of the particles near the center of the rf bucket. 
The achievable cooling rate can thus be significantly in- 
creased. 

qe = electric charge carried by the particle 
h = harmonic number of the fundamental rf system 
TT = transition energy 
7) = 1/y; - l/r” 
wg = synchronous revolution frequency 
/?c = synchronous velocity 
E = Amoc2y, synchronous energy. 

The action variable J is a constant of motion. In the small- 
amplitude limit rnd << I, J is given by 

J ~ 8&K(2-I’=) l/4 

3cl/2cv4 
@3/4 , rr<<c+ (4) 
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2 DOUBLE RF SYSTEM 

2.1 Equations of Motion 

The voltage seen per revolution by the particle of phase 
deviation 4 relative to the fundamental system in a double 
rf system, is 

where a is the value of the Ifamiltonian and K(2-‘i2) x 
1.8541 is the complete elliptic integral of modulus 2-‘i2. 
The synchrotron-oscillation frequency is given by the time 
derivative of the angle variable Q, 

3’13 R 
fig = 22,3K4,5;20’,2) (-$q3(;y3, J<So 

(5) 
V(4) = Vsin($ + 4,) + CVsin(m4 + m&,) (1) 

where 

where 

and Ro = dm (6) 

*Work performed under the auspices of tlw U.S. Department of are the bucket area and the zero-amplitude synchrotron- 
EIlCrgv. oscillation frequency, respectively, in the absence of the 
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secondary rf system. 4 and U’ are expressed 

l 
4 = cj cn [2K(2-1’2)fl,r/ir] 

q of the particles can be described by the transport equa- 
tion, which is obtained by averaging the two-dimensional 
Fokker-Planck equation over cp 

I W = I&‘fi sn [2K(2-‘/“)Q,l/*] dn [2K(2-‘/‘)Q.t/*] 

(7) 
where sn, cn, and dn are the Jacobian elliptic functions. 
Here in Eq. 7, the amplitudes of the oscillation are 

d=2(&)1’4($J’4, kL2(&)” (8) 
where a is related to J by Eq. 4. 

Eq. 5 indicates that a secondary rf system changes the 
spread in synchrotron-oscillation frequency of the particles 
of different oscillation amplitudes. This results a change 
in the structure of the synchrotron side-bands in the fre- 
quency domain. For a typical bunch of particles where the 
density is the highest at the center, and zero at the sep- 
aratrix, the side-band splitting no longer exists. On the 
other hand, side-band overlapping becomes significant. 

2.2 The Transport Equation Do =: 

Consider the stochastic cooling of the transverse dimen- 
sion z of a bunched beam of N particles that perform 
synchrotron oscillation with frequencies ni and phase am- 
plitudes ii. The increment U,, in T’ = dr/ds, which is 
experienced by the particle i per unit time at the kicker, 
is proportional to the displacement xp of all the particles 
at the pick-ulp,’ 

with 

GD(*) = g G( m*u0 * Q )Jrr(m9jlh)Jrk(m~ilh), 
VI=1 

(15) 

x exp(il+f)G(m*ws - IRj) 

x 2 2 i’Jk(-n&/h) 
“=-IX k=-m 

X exp [it(mwc - 1Srj + 7lWs - tRi) + i&p]. 

(9) 
Here, G(w) is the gain of the cooling system, pz is the 
Courant-Snyder parameter, Jl is the Bessel function of Ith 
order, and 4’ is the initial phase of synchrotron oscillation. 
The superscripts P and I( denote values at the pick-up and 
kicker, respectively. 

Using transverse angle-action variables cp and I, the 
equations of imotion are 

f+= $+u,. i = u, 
I 

where 

WI = -&‘,IsincpU,~, U, = -~~sin@,~. (11) 

Typically, the time for stochastic cooling to produce an 
appreciable effect is much longer than the revolution pe- 
riod. The evolution of the transverse distribution function 

a* 
dt= -;(F*)+g Dg . 

( > (12) 

Neglecting the thermal noise of the cooling system, the co- 
efficients of correction F and diffusion D can be evaluated 
by employing the representation of the Jacobian elliptic 
function as a trigonometric series and keeping only the 
leading term. Then, 

Here. 

F(I) = F’I, DSJ, = DOI( (13) 

FQ = dJ p(J)sin(i/,ABPK) 2 2 
Vk=--m I=-00 

xG(m*wo - lRi)ei’nl*ePKIWoJ:(-o~~) 

1=-m k=-m 
n.(J’)=kn.(J)/ 

x (lG~(--)l~ + lG~(+f + me [c~t-lC,{;J;} 

and AePK is the azimuthal distance between the pick-up 
and the kicker. The boundary condition to this equation 
is 

I=O: -FIY+f$=O; 
(16) 

( I = I,,, : * = 0 

where I,,,, is the transverse aperture of the accelerator. 
In Eq. 14, p(J) is the density in J, and 

(IR,(J)= 3lf3 c x w 
dJ 24 22/3K4/3(2-‘/2) 

(m2; l)r” (t)“‘. 

(17) 

2.3 Optimum Cooling Rate 

Because F and D are both independent of Q, the reduc- 
tion rate of the transverse emittance can be obtained by 
integrating Eq. 12. The average gain Gopl for achieving 
the optimum cooling rate is 

(18) 

Here, ( ) denotes the average over the quantity J, (k) = 
(n)ws(r) is the number of significant synchrotron side- 
band, (n) is the average harmonic of the cooling system, 
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BUCKET FILLING RATIO 

Figure 1: The reduction rates of the transverse emittance 
as a function of the bucket filling ratio for a bunch of 
lg7Au7’+ ions stored with a single (solid line) and a double 
(dashed line) rf s,ystem, respectively. 

and Anfs is the frequency bandwidth. The optimum rate 
for small-amplitude oscillation is 

dn)*Cw 
8K2(2-‘/*)h*(p(J)) (I’) 

Note that in obtalining Eq. 19, synchrotron side-band over- 
lapping has been neglected. 

A computer program has been developed to calculate the 
cooling rate by evaluating F” and Do according to Eq. 14 
considering synchrotron side-band overlapping. Fig. 1 
shows the transverse cooling rates of a bunch of 10’ 
ig7Au7’+ ions during stochastic cooling in the RHIC. The 
dashed line indicates that with a fundamental system of 
160 MHz and a secondary system of twice the frequency 
(m = 2), the cooling rate is independent of the ratio of the 
bunch area to the bucket area (bucket filling ratio). 

3 COMPARISON 

3.1 Small Amplitude Case 

Stochastic cooling with a single rf system has been inves- 
tigated previously.’ The optimum rate of reduction of the 
transverse emittance for small amplitude J < jo, is 

r*;; x (n)‘Cw (J) 
~*@(P(J)) jo’ 

W) 

except with a single rf system of 160 MHz. The cooling 
rate decreases linearly with the increasing bucket area. 

The cooling efficiency can be significantly improved with 
a secondary rf systern. When the secondary rf system is 
employed, the spread in synchrotron-oscillation frequency 
is broadened appreciably. Eq. 19 indic.ates that the op- 
timum cooling rate is approximately independent of the 
bucket filling ratio. 

3.2 Large Amplitude Case 

In the case of a single rf system, the spread in 
synchrotron-oscillation frequency increases for particles of 
large synchrotron-oscillation amplitudes. Consequently, 
stochastic cooling becomes more effective when the par- 
ticles occupy larger amount of the rf bucket. 

On the contrary, cooling is less effective in the case of a 
double rf system when the rf bucket becomes full. For m = 
2, the synchrotron-oscillation frequency can be derived 

It is found3 that for particles with large synchrotron- 
oscillation amplitude (approximately with J/Jo between 
0.3 and 0.8), the spread in synchrotron-oscillation fre- 
quency is small. Stochastic cooling becomes difficult if 
most of the particles in the bunch are in this large- 
amplitude region. 
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In the case that the particle distribution in J rernains 
unchanged, the transverse cooling rate is linearly propor- 
tional to the bucket filling ratio. The solid line in Fig. 1 
shows the same transverse cooling rate as the dashed line, 


