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Abstract 

The effects of the Beam - Plasma inter&on on a finite radial 
and Transversal conductor was studied. We obtained the 
resonances for different density profiles at the plasma and 
beam. We used different temperatures too. The method is 
based on the Vlasov-Maxwell system equations with fit 
order perturbations. The discussions was restrited to the 
adiabahc regime. 

11 INTRODUCTION 

this case, electron for the plasma and beam).gu(r) is the radial 
density (see fig l), and Fu(v) is the axial velocity equilibrium 
distribution functions. 
The model adopted and the former assumptions yield to the 
system Vlasov Maxwell equations written as follow: 

Div g = c 47te,~tc(O) d2v f&,i;,t) (2) 
P 

The beam plasma interactions is one of the best known 
interactions for understanding many phenomena as wake 
field1 ** for instances and others too. The particles are 
assumed to be inhomogeneous radial distribute and confined 
by strong magnetic field. In this paper we discuss the relation 
dispersion for a bounded beam plasma system in the regime 
below for linear unstability. In system as beam plasma 
interactions appears density gradients in the axial and radial 
directions, hare we only treat witch radial inhomogeneities, 
besides, we suppose a electronic plasma, neglected the effects 
of binary collisions, e.i, the collisions frequency is much 
lower than the wave frequency. 

2 THEORETICAL MODEL 

In order to solve the Vlasov Maxwell system, we used the 
small pzmurbdous about the VIasov equilibrium3, and due to 
strong magnetic field that allow us to consider only axial 
velocity distribution functions f,, (r,v,t) for the plasma and 
tnxuns: 

(1) 
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Div 6 = 0 (4) 

vdv f,,d?,v,t& (5) 
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az +g&r)$ Ezx =0 (6) 

nL0) is the particles density on axis. 

In the equation 5,we can to identify the current density as4: 

J, = c e&O) I vdv f&+v,Q (7) 
P I 

Where y, v&s the transversal, longitudinal velocity and 
the equilibrium distributions may be written as fu(r,v) = 
@(r)Fp(v). p denotes the kind of particles in the plasma (in 
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$x is the z component of the dielectric tensor, which may 
be obtained by expanding the Vlasov equation in spatial 
coordinates and using the Laplace transform for the time 
variable,we obtain in this way: 

qr,k,w) = 1 - c by 
P 

9 (8) 

k 
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where: 

47u@l~O) 
$a@)= q (9) 

We assume the same value of wP (0) for the plasma and 
beam. 

If the fields have the form 

@,t) =lE(r) expi(tnl3) expi(kz - cot) (10) 

We can to fiitd from the Maxwell’s equation the following 
differential equation for the 2 coordinate: 

[ 1 - gp I,dk,o)] K + $ Eon(r) = 0 
1 

And 

% = [l/(1 -E+(;)(;- 1))11 

(11) 

(12) 

(13) 

(14) 

If we used th.e Maxwelliam velocity distribution functions 
for the plasma and beam: 

F$ q - (qgq-k&g-) (15) 

q = (ypq-QfgB;;q (16) 

v. is the velocit:y of the beam. 

The equation 10 is solved by expanding Em(r) in Fourier - 
Bessel series. Finally we get the following dispersion relation 
in dimensionless; value.s. 

Which % is a vector associated with the eigen functions 
for the electric field 

Dmn = E2i;2--2 
0 

( 
ci, Z[P) + C&Z.(u) _ n \ 

c2 I;z +x2 1 ml) 2&i? 2h’,@ 1 

(18) 

clt;,, = 2 
a2Jm+hdJm+dx,Io) 

h r Jm+l(rPmiY,+l(rP,,,Igp.b(r) (19) 

pml = Xml/a zeros of the Bessel-s functions. 

j;=ka ; &‘f= KBT~ 

m&@)a2 

; p2=w1& 

2 2&l* 

cz.= ; a= % g;ic;-- -b&l P 
a is the wave guide, k is the wave number, n the unity 

matrix, E is the beam energy, 2’ is the derivate of the 
dispersion function. Due to the transversely boundery at z=L 
for the electric field give us: 

K,+T=a with z=Ol 
L , *- m) 

K+(-) is the wave number when the electromagnetic wave 
travel to right (left). 

3 RESULTS. 

The equations (17) is solve5 for the fundamental mode m 
= 0, and the figure 2 illustrated it’s results. Two modes 
appear low and high frequencies, remember that for the case 
Vlasov-Poisson system only appear the modes for low 
frequency6. The axial quantizations give us a decoupling of 
the beam from the imperturbable modes and hence a decrease 
of the growth rate&the figure 2 show the relation of k.+ and k.. 

D,f7 = 0 (17) 
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Fig 1. Density profiles for the plasma @) and the electron 
b-J-Nb). 
In this case a=16,bp=0.4 and bb=.2 In general this values are 
determined b:y the experiment, 
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Fig 2 Show the low and high frequency branch The low 
branch including the Landau dampig (the lower branch) 


