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Abstract

By using the recently proposed thermal wave model for rel-
ativistic charged particle beam propagation a new approach
for studying some nonlinear effects in accelerator machines
is developed. By taking into account the interaction of a
relativistic charged particle bunch with both the RF and
the self-induced wakes, and neglecting the synchrotron ra-
diation emission,we show that the longitudinal dynamics
is governed by a nonlinear Schrédinger equation for a com-
plex wave function whose squared modulus is proportional
to the longitudinal bunch density. This wave model, for
which the diffraction parameter is represented here by the
fongitudinal emittance, is suitable to give a new descrip-
tion for the bunch instability and capable of reproducing
both the well known coherent instability {stability) condi-
tions and the well known longitudinal envelope equations
{space charge effect included). Furthermore, we show that,
in the case of RF off, soliton-like solution for the density
profile are possible when the bunch propagates under the
action of the self force. This model might deserve attention
in understanding the bunch lengthening (shortening).

1 INTRODUCTION

Recently a thermal wave model for relativistic charged par-
ticle beam propegation, useful for a quantum-like descrip-
tion of the optics and the dynamics of charged particle
beams, has been proposed in literature [1] and success-
fully applied to the transverse dynamics in both conven-
tional accelerating machines and new plasma-based par-
ticle accelerator schemes [2]. In particular, this model
seems suitable to describe both the spherical aberrations
for the luminosity estimates at the interaction point when
a quadrupolar-like lens with octupolar deviations is taken
for the final focusing stage in linear colliders [3], and the
self-consistent nonlinear interaction between the plasma
wake field and the driving relativistic electron {positron)
beam [2].

In this paper, in analogy to the transverse beam dynamics
description given in the previous works [1]-[3], we suggest
a novel approach to study the nonlinear longitudinal beam
dynamics in particle accelerator. To this end, in Section 2
we propose a sort of nonlinear Schrédinger (NLS) equation
for a complex wave function ¥, the so called beam wave
function (bwf), whose squared modulus gives the longitu-
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dinal density profile of the beam. In Section 3 an analysis
of both coherent instability (stability) and soliton forma-
tion is developed within the contex of the thermal wave
model which is capable of reproducing the well known co-
herent instability criterion [4], showing that the latter is
fully similar to the well known criterion of modulational in-
stability occuring when an e.m. bunch is travelling through
a nonlinear medium. In Section 4, by using the thermal
wave model, we are able of reproduce the well known enve-
lope equation, which holds by taking into account both the
RF field (potential well) and self interaction (wake fields).
Section 5 concerns the comments and summarizes the con-
clusions.

2 WAVE EQUATION FOR THE
LONGITUDINAL BEAM MOTION

It is well known that the longitudinal motion of a single
particle within a stationary bunch travelling with longi-
tudinal velocity 8¢ in a circular accelerating machine is
described, neglecting radiation damping, by the following
motion equation [5]:

(1)

where z is the longitudinal particle coordinate with respect
to the synchronous one, w, is the synchrotron angular fre-

quency, 7 = «a — ;I-l-,- is the common phase-slip factor (o

is the momentum compaction and v = 1/4/1 — 32 is the
usual relativistic gamma factor), F is the self force, and
m is the particle rest mass. The term —w?z accounts for
the linear longitudinal force produced by the RF cavity
(potential well) and L F(x,t) is due to the presence of ad-
ditional effects produced by the bunch itself (longitudinal
wake field). Let us denote with 2% the longitudinal mo-
mentum spread with respect to tﬁe synchronous particle
and define s = ct, where c is the speed light. Thus, ‘i——f— and

%‘E, are related by the following equation [6]:
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Consequently, by introducing the wake potential W{«z, s)
by:
F aw

T T (3)



with ¢ the particle charge, and using the first integral of
(1) (energy equation) and (2), we obtain the following di-
mensionless Hamiltonian:
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where K = w?/c? is the RF focusing strength. Note that
here -5 plays the role of an effective mass. In order to find
an cquatlon which describes the longitudinal evolution of
the beam taking into account its thermal spreading (longi-
tudinal emittance) while it interacts with the surrounding
medium (potential well and wake fields), we put, according
to the thermal wave model for relativistic charged particle
beam, the following quantum-like correspondence rules:
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where ¢ is the longitudinal beam emittance. So that,
by considering (4) and (5}, the following Schrédinger-like
equation for the beam wave function (bwf) ¥ can be as-
sumed
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The (7) describes the longitudinal beam dynamics with
the following meaning of ¥. If A(z, s) is the longitudinal
beam density (number of particles per unit longitudinal
length) and N is the total number of particles, thus:

Me,s) = N|¥(z,s)? (8)

so that the normalization condition is provided:

o
J/ [¥(z,s)* dz = 1. (9)
This way |¥|® gives the longitudinal beam density pro-
file. In general, the wake potential is function of |¥[?,
W(z,s) = W(|¥(z,s)|?), so this describes the longitudi-
nal nonlinear beam dynamics in terms of an appropriate
nonlinear Schréodinger (NLS) equation.,

3 COLLECTIVE EFFECTS

In this section we develop, within the framework of the
thermal wave model , an analysis of some collective effects
occuring when the bunch interacts with the surrounding
medium. To this end, we consider the special case of RF
cavity off and take into account both the space charge
effect and a purely inductive coupling impedance. Since
in this hypothesis the self force is proportional to -g-% (4],
the wake potential is:

— 12" /nl| 1¥(=, 5))* (10)

W(z,s) = mqlVRﬁc{ Rbcr
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where gg is the well known coupling coefficient, Z' is lon-
gitudinal coupling impedance per unit length divided by
the mode number n, and R is the averaged orbit radius of
the synchronous particle. Consequently, the (7) becomes:

v en? *¥
8s 2 8z?
where we have put (cgs units):

x = B[l
of the particle. Note that (11) is formally identical to the
cubic NLS equation which describes the propagation of an
electromagnetic (e.m.) pulse through a nonlinear medium
in paraxial approximation {7],[8]. In this analogy ¢ plays
the role of the diffraction parameter (the inverse of the
wavenumber), s corrisponds to the time and —nxr|¥|?
corrisponds to a nonlinear refractive index. So that, an
analysis of the bunch instability (stability) can be made in
complete analogy to the electromagnetic one.

— xNry |7 (11)

—_ |Zl/nj and r; is the classical radius

3.1 Stability criterion
For NLS equation of the form

0% Al
l‘é: + Pa 3

a small perturbation is stable (unstable) if the following
condition (Lighthill criterion) is satisfied {7]:

PQ <0 (PQ > 0).

+ Q®%® = 0 (12)

(13)

Consequently, for the (11) we have coherent stability (in-
stability) with respect to a small density perturbation of
the bunch if

xn < 0 (xn > 0) (14)

(here P = f.g_’. and Q = '—L‘%’JL) Thus, Eq. (14) immedi-
ately recovers the coherent stability (instability) criterion
well known in the conventional theory [4]: (1) if the total
longitudinal coupling impedance is capacitive (x > 0), the
system is stable (unstable) only if it stays below {above)
the transition energy, namely n < 0 (n > 0); (2) if the total
longitudinal coupling impedance is capacitive (x < 0}, the
system is stable (unstable) only if it stays below (above)
the transition energy, namely n > 0 ( < 0).

3.2 Solitons

A solitary solution of Eq. (11) is found by looking for a
solution of a relativistic (8y &~ 1) envelope form:

¥(z,3) = G(z~ﬁog)e"’~'r»m~w.,, (15)

with ko, and wo real numbers. Thus, according to the gen-
eral theory of NLS equation [7], the following soliton-like
solution for the beam density (A = NG?), which satisfies
(9), is possible under the condition ny > 0:

Nixry Nxre
Mz, 8) = Py sech? [ 3e7n (x — Bos) (16)
where ko = Bo/(en?) and wo = (en?/2)k3 — N3x?rE /(16€).
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4 ENVELOPE EQUATIONS

In this Section we find an aberrationless solution of (7)
with the potential (10) following the standard techniques
of nonlinear e.m. wave optics [8]. This allows us to write
an envelope equation for the longitudinal motion taking
into account both the RF fields and the self interaction.
To this end, we look for a solution of (7) in the form:

: e T pizs
¥(z,s) = - I B(z.2) (17)
where the eikonal has been supposed as:
22
b(z,8) = 2en(s) + ¢(s). (18)

By substituting (17} and (18), separating the real part
from the imaginary one, and expanding |¥|? up to the
second-power of = (aberrationless approximation) we get
a coupled equation system for the effective particle bunch
width o(s), the curvature radius of the wavefront p(s), and
the phase ¢(s). Therefore, by solving for o we obtain the
following envelope equation:

d’c £ gl
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where ¢{ = ! 7; . We first observe that in the limit of

negligible self interaction (¢ = 0), (19) gives the envelope
equation for the synchrotron motion (harmonic oscillator
solutions for the bwf). In this case, by using the gquan-
tum uncertainty principle related to Eq. (7), the following
relationship can be proved [1]: o090y = €/2 = constant,
where o, is the bunch length and ¢, is the the guantum
expectation value of P at the equilibrium state. There-
fore, by imposing d®c/ds®> = 0 in Eq. (19), we easily re-
cover the well known relationship between oy and oy [9]:
oo = ([nl/VE)opw = {R|n|/h)o 0, where h is the harmonic
number.

Furthermore, by retaining the self interaction term (£ # 0)
in (19) we get, within the equilibrium condition, the fol-
lowing algebraic expression for o: o4 — H—I:-?-cia' -0 =0,
which in the special case of parabolic densittv profile recov-
ers the well known similar expression given in [10], used to
try an explanation of the potential well bunch lenghtening.

5 CONCLUDING REMARKS

In this paper we have shown possible a novel approach to
the nonlinear longitudinal dynamics of a relativistic par-
ticle bunch in circular accelerating machines within the
contex of the recently proposed thermal wave model for
relativistic charged particle beam propagation [1]. Neglect-
ing the radiation damping, we have shown that the non-
linear interaction between the bunch and the surrondings
{potential well and wake fields) is governed by an appro-
priated NLS equation (equation (7)), fully similar to that
holds for the propagation of an e.m. bunch in a nonlin-
ear medium in paraxial approximation [8]. By using this

similarity we have recovered, when the RF is off the well
known condition for the coherent instability (stability) [4].
We have pointed out that: first, in the e.m. analogy, these
conditions correspond to the Lighthill criterion (modula-
tional instability [7],[8]); second, the density can assume
a soliton-like profile under the condition iy > 0. Physi-
cally, a sort of competition between the diffractive energy
(i.e. thermal energy) and the self energy is established. We
have instability when the self energy term overcomes the
diffraction one. According to Section 3.2 condition nx > 0
suggests that soliton formation would be the natural evo-
lution of the initial beam density modulation toward a self
bunching which asimptotically gives a soliton-like envelope
wave train. Furthermore, by taking into account both the
RF and the self fields, the averaged-quantity description
has allowed us to recover the well known envelope equa-
tion for the longitudinal motion [10].

Let us suppose that is possible to expand the wake poten-
tial Wz, s) in powers of = up to an order n > 2, thus
aberrations are introduced in terms of an anharmonic po-
tential: the odd (even) powers are related to a resistive
(reactive) contribution to the coupling impedance. If the
initial bunch density profile is Gaussian, these anharmonic
terms introduce a distortion which results in a modifica-
tion of the space-distribution of the particles in such a
way to produce, after many turns in the machine, a bunch
length modification. In a forthcoming paper we discuss
more carefully this effect by putting in (7) an expansion
of W(z,s) up to z*. This way we try a realistic wave
interpretation of the anomalous bunch lengthening.
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