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1. INTRODUeTION 

The methods of sequential filtering were 
passed OVt?I- in the field of accelerator 
monitoring and control, deapite the fact of 
these methods' wide application in different 
fields of science and technic (dynamic system 
control, radio location, radio technic, 
communication etc.). 

Here we try to stimulate the application 
of these methods in wide field of accelerator 
identification and control. 

That's why the identification theory and 
sequential filtering survey, together with 
algorithms based on the methods of sequential 
filtering for the beam-kick error8 and 
beam-focus errors estimation, for the 
trajectory and closed orbit correction in the 
bean-lines and rings are presented. 

The general conclueions are illustrated 
by the simulation results. 

2.THR MATHRMATICAL FORMULATION OF THR PROBLEM 

2.1 The Choice of Model and Optimization 
Criterion 

The object and observation on the K beam 
position monitor (BPM) are described by the 
equation 

:4=\ x+vk k=0,1,...,N (1) 

where Z is the measurement vector on the K 

BPM (X:Y,, X ia the vector of LUlkllOWn 

parameters, uL is additive white noise with 0 

mean value, hl, is the influence matrix of X 

parameter vector on the ZI, measurement. The 

matrix R is the intensity or covariance 
matrix of v white noise. 

The main problem of the estimation 
theory is finding the estimation of the 
system jparameter veator X ueina the 
measurement vector Z. In our case the ayetern 
parameter X can be errors in the dipole or 
quadrupole strength and in BPM. beam 
transverse displacements and Ap/p, correctors 
strength 01 corrector calibration 
coefficient, etc. The Z measurement is the 
sum of beam transverse displacement and the 
noise of the BPM. 

Under the optimization criterion of 
estimation for the identification problem one 
understands the losses connected with not 
achieving absolutely precise identification. 

The choice of criterion depends on 
apriori knowledge about the atochaetic 
features of X and noise v 111. 

1. hasi, Square Criterion (LS). 
The LS criterion has a form 

where s 18 nonnegativly defined symmetric 

weight matrix. LS estimate $a= minxJ ia found 

from condition 

85 k-1 Bx x=%s 
= 0. 

For the LS eetimation no apriori information 
about the stochastic features of X and IJ ie 
required. 

II. Maximum Likelihood Criterion (ML). 
Let the function P(Z(X) be probability 

density of measurement for 
estimate 

fixed X. ML 
,=maxxP(ZIX) ia found from 

condition 

[ w I x&IL. = 0, 
which under certain conditions is equivalent 
to results of functional 

J=*.5$z&x1 T~-‘cz)&x3 
0 (3) 

minimization. 
For HL estimation ws need 

information about 
only 

the q error eovariance 

matrix on K measurement. 
III. Maximum Apoateriori Criterion (MAP)- 

Obviously. as the estimate of parameter 
vector X it-s natural to take such X 
maximize the probabilit 

which 

fixed measurement 2 
denaity P(XIZ) for 
,,=maxzP(ZIX). The 

necessary condition for MAP criterion is 

[ 

2) “‘;;I 1 h = 0, X=&N= 
Here we need information about matrix R and 
error covariance 
Po=ECAXo.AX~l. where 

mean value. It can be shown. that 
certain condition6 the maximization of PEyeZf 
is equivalent to minimization of functional 

J=@.MXzP;'AXo + 6.f$i~-hp~T~i~ip$x1 (3) 

0 

The mathematical form derived 
criterion includes those derived for 

for MAP 

LS criterions. 
ML and 

So. if the matrix x and P 

are known one can use MAP estimator. 
estimation 

For HL 
equatiop (41 mathematically 

reduces to (3) if P, + 0,which corresponds to 

no apriori information P,+ (D* If we have I10 

a priori information about 
equation (4) reduce8 to 

noise. too, 
(2) PO+ m and % 

weight matrix can be a unit matrix as well as 
mY nonnenegativly defined matrix. 

For the parameter eetimation we'll uae 
algorithma based on sequential Kalman 
c21. 

filter 
Generally Kalman filter 

information about mean value 
needs 

and diapersion 
of unknown parameter and noiere. 
lese information. Naturally, 

but we uee 
the estimation 

will be suboptimal. but the uniform structure 
of the filter i.~ preserved and it-s easy to 
get the optimum estimate if more 
ia available. 

information 

2.2 Sequential Filtering Algorithms 

I.Parameter Estimation 
If our object and 

described by equation 
obeervation are 

(1). the sequential 
estimation algorithm of parameter 
hae a form C23 

vector x 
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(5) 

P 
k+i 

=P, - Pk+,d++!c+tpkh;+i + %l-i$+ipk 

where R is the parameter vector eetimation 
after the measurement q is uaed for 

estimation. Matricee $, 5, P, are already 

described in equation (Z-4) 
The initial values of p and PO will be 

changed in dependence on our b&ow~;@3 about 
the stochaetic features UnknOWIl 

parameter vector X a8 it wae described 
above. If ECXI and PO are known ?=S[X] and 

algorithm (5) will produce MAP estimatmif 
E[XJ ia unknown then PO+ ~0 ( in the numerical 

realization P can be a diagonal matrix, if (3 
Wi3 have no any information about the 
correlation between the elements of vector X, 
a$ the diagonal elements are choeen to be 
10 -104 order of magnitude of expected value 
X) and/jp=0. In this caiae (5) produces ML 
estimate. If Es, matrix is unknown, any weight 

matrix can be taken and LS estimation will be 
obtained from (5). The weight matrix can be 
chosen in dependence on our assumptions about 
the measurement featuren of BPM. 

Up to now we treat with the parametere. 
which have linear influence on the 
measurement. POI- nonlinear parameter 
estimation Kalman nonlinear filter is 
assumed. Particularly for the quadrupole 
etrength estimation thie algorithm can be 
applied. 

Here the observation will be described 
by the equation 

dq=hl,(XavdC)+vk (6) 
where XQ ia the unknown etrength of the 

quadrupole, dC is the known kick applied on 
the corrector situated upstream of the 
UnkIlOWIl quedrupole. $(XQ ,dC) ia the 

influence matrix of Xo and dC on X BPM, dZi, 

is the difference in the trajectory 
measurement on R RPM before and after dC kick 
is applied. 

For the Xo estimation the nonlinear 

sequential filter has a form [21 

-%~+'='itj: + ~~,,~+~~'C~+~-h);+~(~~.dC)l (7) 

P k+i=Pk - ‘kg+* ‘%+ipk&+ % l-%+tpk 

where y+&= [L&2+& 

and all matrices and vectors have the 6eme 
meaning aB in (5). 

II-The Katimation of Control 
For the estimation of control kicks of 

the correctors sequential algorithm ia used, 
which is based on the Ralman filter C3.41. 

The trajectory and closed orbit control 
problem ia the minimization of mea-ement 2i, 

with reepect to the central trajectory, It 
meana the mj.nimization of functional 

(8) 

where X is the vector of ueed correctore, Nl 
and N2 are the numbers of first and last RPM 
of the section in the beamline. For the 
minimization of functional algorithm (51 is 
assumed, where only the first equation is 
changed into 

Y+*=Y + Pk+*h+T+$$ r-Z&q+$? (8.) 

The structure of algorithm ia the same for 
the coupled case. 

It's more efficient to correct the 
trajectory in relatively short sections of 
beamlinee using correctora from that 
sections. It's possible to use bump approach 
to the trajectory correction in the beamlines 
i.e. correct the trajectory in a section 
without diaturbing the one outside the 
section. It can be realized by minimizing the 
functional (8) with the constrain8 

&,+,X=0. \z+zx=O. (9) 

It-s supposed to include these constrains 
into the functional (8) with big weight 
matrices. 

NZ+Z 

5~0.5 I$+\xl (10) 

where ZNzc,=ZNZtz=O and the diagonal elements 

of the matrices Ru,+, and stfr2+* must have big 

values (z100+300). Two conetrainu are changed 
into four for the coupled case: 
~2-ix=@. $2=0, &**X=@, k*+2x=0- (11) 

The control kicke estimation with theee 
algorithma ia attractive, because the 
algorithme have a couaaon structure for 
different requirement to the control problem 
and don't need calculation8 of inverse 
matrix. The elements of R matrFx can be 
chosen in a way to exclude the meaeurements 
of doubtful BPM or fncreaee the influence of 
thoee where the trajectory minimization ia 
more deeirable. 

The sequential algorithma can be applied 
for the closed orbit correction, too. In 
equation (0) the matrix 4 is the influence 

matrix of correctors vector X on closed orbit 
on R BPM. In eome caeee it is desirable to 
minimize the closed orbit in the long 
sections using the corrector6 from the 
sections without dieturbing the one in the 
reet part of the ring. We eiuppoae the 
application of multi corrector bump for this 
problem. Here two correctora are fixed in the 
enda of section, which don't take part in 
minimization. then with remained correctora 
the minimization procedure ie applied for the 

chosen section. With the consideration of 
bump condition the i corrector influence on j 
BPM will be 

-qFy-- 
sin (pjo em (pnmi Jc’. , 

sinp 
PO 

-py-- 
sin (qio)sin(pnj) j>i , 

sinp no 

where P, ier beta function on i position, p,J 

is phase advance between positions i and j, 0 
and n are the poaitione of first and laat 
fixed correctors. 

The algorithm (8') ia Buppoeed to be 
used for the minimization. The strength8 of 
two end correctora and defined from bump 
condition 
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“=+L,no -T- ‘4?y s I n (VI, ,c, 

o’=Ty?” --.‘;,_-y”ir; stn(PoL)CI 

where C i=l.....n-1 are the correctors L 
strengths. which are the result of the 
algorithm (8'). 

One of the main difficulties in the 
closed orbit correction problem are the BPM 
and correctors bia number. Since the 
auggested sequential algorithm processes the 
RPM measurement sequentially and doesn't need 
the inverse matrix calculation, the one side 
of problem is seemed to be overcome, but the 
dimensions of P matrix can cause calculation 
problem for the big number of correctors 
(the dimension is N*N, where N is the number 
of the correctors). 

Here the application of singular 
analyses ia possible for the decrease of the 
estimation parameters- number C5). 

our model (1) can be written in a 
general form 

Z=HX+u 

where 
Z=IZi.Zz.....ZNlr, H=[H,.HZ.....HN)'. 

VZ[V I JJZ, - - - .VN IT- If H=USV' decomposition is 

realized, where U and V are orthogopal 
matrices, S ie a diagonal matrix and a=u 2, 
X=VP the new system will be 

g=SP+v. 

Since S is a diagonal matrix, the influence 
of new parameters P on the rusiduals 1s 
uncorrelated. The sum of eqllares of residuals 
is 

p'=l IZ-HXI I'=/ Ig-SPI 1' 

and one can choose desirable sum of squares 
of residuals in dependence on the number of 
nonzero 'elements of vector P. So if 
P=CP,,P~,---,P~,~,~.-,61. then 

So number of nonzero elements in vector P can 
be chosen and then minimization of functional 

J=CZ-HVPITR-'fZ-HVP1 

with algorithm of sequential filtering is 
applied. 

3.. THE RESULTS OF SIMULATION 

Set of programs is written for the 
investigation of suggested algorithme. They 
can be applied for the identification and 
model-based control of beamlinea and rings. 
The inveetigation are carried out on the 
model of the electron beamline from 'PETRA' 
to *HRRA' (DEZY). The reeults of beam initial 
parameter estimation (X,X-,Z,Z*,Ap/p) are 
presented in C3.41. 

In fig.1 the example of trajectory 
correction on a section of the beamline is 
preaented. Here the trajectory between sixth 
and twelfth monitors ie corrected by the 
sequential algorithm. The trajectory 
measurements are supposed to be done by the 
screen monitors with accuracy of 0.2nxa. 

In fig.2 the application of bump control 
between eighth and fourteenth monitors is 

shown. In both figures the dashed line is the 
trajectory before correction and the solid 
line the one after correction. 

In fig.3 an example of quadrupole 
strength estimation is 
otrength of quarupole 

pre8enteQ. The real 
is 8.8137m _ Here the 

sequential estimation veraus the number of 
msasurements is presented. 

4. CONCLUSIONS 
SO, the algorithm8 based on the 

eequential filtering methods are seemsd to be 
efficient in accelerator control and 
identification. They have a common structure 
and are flexible for the different 
requirements upon the control problems and 
different levels of apriori information. 

These algorithms don't need the 
calculation of inverse matrix are very stable 
to measurement errors. They don't need big 
computer memory due to sequential processing 
of measurement8 and self-learning character 
of algorithms. 

5. REFERRNCBS 

Cl1 A.P. Sage and J-L. Melsa. Syatem 
Identification. N.-Y. & London: Academic 
Press, 1971. 

C21 A.P. Sage and J.L. Melea. Estimation 
Theory with Application to Coaxaunication 
& Control, N.-Y.: &Grew-Hill, 1972. 

(37 S-H. Ananian and R-H. Hanouki0n 
DESY-H-98-15, November 1998. 

C41 S.H. Ananian and R-H. HtUlOU.kilXl "The 
Program for Automatic Control of Ream 
Transfer Lines", Proceedings of IEEE 
Particle Accelerator Conference, 
San-Francieco, USA, 1991. 

I.51 Ch.L. Laweon and R.J. Hsnson, SolViKlg 
Least Squares Problems, Rnglewood Cliffs, 
New-Jersey: Prentice-Hall,Inc, 1974. 

I HoR/‘vNrAL TRIICCTOR Y 

I, k;/, 
L-- 

H%7MON7X T~~c70.4 v 

lip.2 
&STM4?R’N OF r?UUHhWlE STMMKH 

pi/E-- 
--- ----- ------- - 

J 
($3 


