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1. INTRODUCTION

The methods of sequential filtering were
passed over in the field of accelerator
monitoring and control, despite the fact of
these methods” wide application in different
fields of science and technic (dynamic system
control, radio location, radio technic,
communication etc.).

Here we try to stimulate the application
of these methods in wide field of accelerator
identification and control.

That 8 why the identification theory and
sequential filtering survey, together with
algorithms based on the methods of sequential
filtering for the beam-kick errors and
beam-focus errors estimation, for the
trajectory and closed orbit correction in the
beam-lines and rings are presented.

The pgeneral conclusions are illustrated
by the simulation results.

2 .THE MATHEMATICAL FORMULATION OF THE PROBLEM

2.1 The Choice of Model and Optimization
Criterion
The object and observation on the K beam
position monitor (BPM) are described by the
eguation
‘a:hkx+vk k=@,1,...,N (1)
where Zk is the measurement vector on the K

BPM (X,Y), X is the vector of unknown

parameters, v, is additive white noise with 9

mean value, hk is the influence matrix of X

parameter vector on the Zk measurement . The
matrix R is the intensity or covariance
matrix of v white noise.

The main problem of the estimation
theory is finding the estimation of the
system parameter vector X using the
measurement vector Z. In our case the saystem
parameter X can be errors in the dipole or
quadrupole strength and in BPM, beam

transverse displacements and Ap/p, correctors
strength or corrector calibration
coefficient, etc. The Z measurement is the
sum of beam transverse displacement and the
noise of the BPM.

Under the optimization criterion of
estimation for the identification problem one
understands the loases connected with not
achieving absolutely precise identification.

The choice of criterion depends on
apriori knowledge about the stochastic
features of X and noise v [1].

1. Least Square Criterion (LS).

The LS criterion has a form

N
- T _ T _
J~0.5£°[Zk th] Sk[Zk th] (2)
where Sk is symmetric
weight matrix. LS estimate i;s:minxJ ia found

nonnegativly defined

from condition

= 0.

A
X ly-%s

For the LS estimation no apriori information
about the stochastic features of X and v is
required.

II. Maximum Likelihood Criterion (ML).

Let the function P(Z|X) be probability
dengity of measurement for fixed X. ML
estimate LTmax P(Z]|X) is  found from
condition

IP(Z]| X) - @
ax o - ’
X=Xm1
which under certain conditions is equivalent

to resulta of functional

J:0.52?2k~—}1kX] Rz, -h X1 (3)

minimization.
For ML estimation we need only
information about the Rk error covariance

matrix on K measurement.
III. Maximum Apoasteriori Criterion (MAP) .
Obviously, as the estimate of parameter
vector X it"s natural to take such X which
maximize the probability density P(X|2) for
fixed measurement 2 ap~max_P(Z]|X). The

necesasary condition for MAP criterion is

[ 9P(X|2) ] N
ax o~ - ’
X=XMaAr
Here we need information about matrix R and
error covarliance matrix %{ estimation
P°=E[AX;,AX%]. where AX;:E[X]~ and E{- lis

mwean value. It can be shown, that under
certain conditions the maximization of P(X|Z)
is equivalent to minimization of functional

N
J=0.5aX P AKX + @.5%12 -h X1"R* (7, -h X] (3)

The mathematical form derived for MAP
criterion includes those derived for ML and
LS criterions. So, if the matrix Rk and P

fel
are known one can use MAP estimator. For ML
estimation equatio (4) mathematically

reduces to (3) if K;» 9,which corresponda to
no apriori information P;» o, If we have no

a wpriori information about
equation (4) reduces to (2)

noise, too,
PO¢ o and S&
weight matrix can be a unit matrix as well as
any nonnenegativly defined matrix.

For the parameter estimation we’ll use
algorithms based on sequential Kalman filter
£231. Generally Kalman filter needs
information about mean value and dispersion
of unknown parameter and noise. but we use
less information. Naturally, the estimation
will be suboptimal, but the uniform structure
of the filter is preserved and it's easy to
get the optimum estimate if more information
is avallable.

2.2 Bequential Filtering Algorithms

I.Parameter Estimation
If our object and observation are
described by equation (1), the sequential
estimation algorithm of parameter vector X
has a form [2]



+ C T ~1 4
&k 1:'f + Pkuhkunk [Zkﬂ—hkﬂik] (%)

T T -1
Pku:Pk - Pk+xh)<+1[h}c+1pkhkﬂ * P\x] hkﬂp)c

estimation
used for

where i? is the parameter vector
after the measurement Zk is

estimation. Matrices hk, Rk, Pk are

described in equation (2-4)
The initial values of 5? and P will ©Dbe

about
unknown
described

already

changed in dependence on our knowledge
the stochastic features of the
parameter vector X as it was

above. If E[X] and P0 are known =zE{X] and

algorithm (5) will produce MAP estimatemif
E[X] is unknown then Po» @ ( in the numerical

realization Po can be a diagonal matrix, if

we have no any information about the
correlation between the elements of vector X,
an th? diagonal elements are chosen %o be
10"-10° order of magnitude of expected value
X) and =9. In this case (5) produces ML
estimate. If Rk matrix is unknown, any weight

matrix can be taken and LS estimation will be
obtained from (5). The weight matrix can be
chosen in dependence on our assumptions about
the measurement features of BPM.

Up to now we treat with the parameters,
which have linear influence on the
measurement . For nonlinear parameter
estimation Kalman nonlinear filter is
assumed. Particularly for the quadrupole
strength estimation this algorithm can be
applied.

Here the observation will be described

by the equation
dZ&th(Ka,dC)+Vk (6)
where Xo ia the unknown strength of the

quadrupole, dC is the known kick applied on
the corrector situated upstream of the
unknown quadrupole, hk(XQ,dC) is the

influence matrix of Xh and dC on K BPM, dZ&

is the difference in the trajectory
measurement on K BPM before and after dC kick
is applied.

For the XQ

sequential filter has a form (2]

‘R;“:ik + Pk+1ﬂ’:ﬂl{citzk~1”hkﬂ(‘R:'dc)] N

Q

T T -1
Pk+a:Pk - PkHy+a[}&+1Pka+x+ Rk] Hk+1pk

where

estimation the nonlinear

dhk+1

H..= [W]%

and all matrices and vectors have the
meaning as in (5).
I1.The Estimation of Control
For the estimation of control kicks of
the correctors sequential algorithm is used,
which is based on the Kalman filter {3,4].
The trajectory and closed orbit control
problem is the minimization of measurement Z)<

same

with respect to the central trajectoryo It
means the minimization of functional

N2
J=0.5)(7 +h X1'R * (2 +h, X] (8)
1
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where X is the vector of used correctors, N1
and N2 are the numbers of first and last BPM
of the section in +the beamline. For the
minimization of functional algorithm (5) 1is
assumed, where only the first eguation is
changed into

=X + b n R -7 -h X7 (87

The structure of algorithm is the
the coupled case.

pame for

It's more efficient to correct the
trajectory in relatively short sectiouns of
beamlines using correctors from that

sections. It s possible to use bump approach
to the trajectory correction in the beamlines
i.e. correct the trajectory in a section
without disturbing the one outside the
section. It can be realized by minimizing the
functional (8) with the conatrains
llNZ-'-i X:Q’ }szzxze‘ (9)

It s supposed to include these constrains
into the functional (8) with big weight

matrices.
N2+2

J:0_52£Zk+th]TI§: [Z, +h X] (1)
1

Nz‘t:ZNZ*zze and the diagonal

of the matrices RNzn and Rch must. have big

where Z elements

values (~120+309). Two constrains are changed
into four for the coupled case:

th_‘X:@, thX:O, th+1x:0’ th+zx:e' (1)

The control kicks estimation with these
algorithms in attractive, because the
algorithmes have a common structure for
different requirement to the control problem

and don“t need calculations of inverse
matrix. The elements of R matrix can be
chosen in a way to exclude the measurements

of doubtful BPM or increase the influence of
those where the trajectory minimization is
more desirable.

The sequential algorithme can be applied
for the closed orbit correction, too. In
equation (8) the matrix hk ia the influence

matrix of correctors vector X on closed orbit
on K BPM. In some cases it is desirable to

minimize the c¢losed orbit in the long
sections using the correctors from the
sections without disturbing the one in the

rest part of the ring. We suppose the
application of multi corrector bump for this
problem. Here two correctors are fixed in the
ends of section, which don"t take part in
minimization, then with remained correctors
the minimization procedure is applied for the
chosen section. With the consideration of
bump condition the i corrector influence on J
BPM will be

FE ain (pjo )sin (pni) %,
(A ﬂlnpno
A sin (@io )sin(pnj) i,
ﬂiﬁj Binge

no

where BL is beta function on 1 position, c”
is phase advance between positions i and j, ©
and n are the positions of first and last
fixed correctors.

The algorithm (8°) is supposed to be
used for the minimization. The strengths of
two end correctore and defined from bump
condition
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_ 1 -1 = )
Co= ?Bo s y Yﬁl ILh(an)Ct

1

_ 1 -1
Co= g ere Z VA"

where q

sun(tr-"m)C‘L

correctors
result of the

i=l,....n-1 are the

strengths, which are the
algorithm (87).

One nof the main difficultiea 1in the
closed orbit correction problem are the BPM
and correctors big number . Since the
suggested sequentlial algorithm processes the
BPM measurement sequentially and doesn”t need
the inverse matrix calculation, the one side
of problem is seemed to be overcome, but the
dimensiona of P matrix can cause c¢alculation
problem for the big number of correctors

(the dimension is N¥N, where N is the number
of the correctors).
Here the application of singular

analyses is possible for the decrease of the
estimation parameters” number (5].

Cur model (1) can be written in a
general form

Z=HX+v
Zh?ge z 71", H=[H ,H H 1"
rbys--sd 1y H=[H ,H ,...,H 1,
v:[ux,uz,_._,vN]T_ If H=USV" decomposition is
realized, where U and V are orthogogal

matrices, S is a diagonal matrix and g=U Z,
X=VP the new system will be
g=SP+v _

Since S5 is a diagonal matrix, the influence
of new parameters P on the residuala is
uncorrelated. The sum of aguaves of residuals
is

¥4 2 2

P =||Z-HX| | =] | g-8P| |

and one can choose desirable sum of squares
of residuals in dependence on the number of
nonzero elements of vector P. So if

P=(P ,P,,...,P,@,...,0], then

ial
2 2
o :Ef
L
+1
So number of nonzero elements in vector P can
be chosen and then minimization of functional
J=[2-HVP1"R™* [Z-HVP]
with algorithm of
applied.

sequential filtering is

3. THE RESULTS OF SIMULATION

Sett of programs is
investigation of sugmested
can be applied for the

written for the
algorithms. They
identification and

model-based control of beamlines and rings.
The investigation are carried out on the
model of the electron beamline from “PETRA"

to "HERA® (DEZY). The results of beam initial
parameter estimation (X,X ,Z2,Z7,Ap/p) are
pregented in [3,47.

In fig.l the example of trajectory
correction on a section of the beamline is
presented. Here the trajectory between sixth
and twelfth monitors is corrected by the
sequential algorithm. The trajectory
measurements are supposed to be done by the
screen monitors with accuracy of 0.2mm.

In fig.2 the application of bump control
between eighth and fourteenth monitora is

shown. In both figures the dashed line is the

trajectory before correction and the solid
line the one after correction.

In fig.3 an example of quadrupole
astrength estimation ia preaente&. The real

. Here the
number of

strength of quarupole is ©.8B137m
sequential estimation versus the
measurements is presented.

4. CONCLUSIONS

So, the algorithms based on the
sequential filtering methods are seemed to be
efficient in accelerator control and
identification. They have a common structure
and are flexible for the different
requirements upon the control problems and
different levels of apriori information.

These algorithms don’t need the
calculation of inverse matrix are very stable
to measurement errors. They don’t need big
computer memory due to sequential processing
of measurements and self-learning character
of algorithma.
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