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Abstract

A numerical method for solving the Thomas-BMT
differential equation is presented. It has been imple-
mented in the ray-tracing code Zgoubi. This is il-
lustrated by ray-tracing in the spectrometer SPES 2
and multiturn tracking of resonant depolarization in
the synchroiron Saturne.

1 INTRODUCTION

A numerical method for solving the Thomas-BMT
(1] differential equation of spin motion is presented.
It is based on the numerical formalism used for the
tracking of charged particles in the ray-tracing code
Zgoubi [2], in which it has been implemented re-
cently [3]. This is illustrated by ray-tracing in the
spectrometer SPES 2 [4], and by a detailed study of
resonant depolarization by multiturn tracking in the
synchrotron Saturne [5].

2 NUMERICAL SPIN TRACKING

The ray-tracing code Zgoubi provides a numerical
solving of the Thomas-BMT differential equation of
motion of the spin S of a particle travelling in a mag-
netic field B [1].

dS/dt = (g/ym)S x § (1)
where Q=(1+1G)B+G(1 - 7’)§|| (2)
g,m,y and G are the charge, rest mass, Lorentz fac-
tor and gyromagnetic anomaly ; B) is the component
of B parallel to the particle velocity #. The code han-
dles more practical notations : let v =|| & || ds = vdt
(dlﬂ'erentlal path), §' = dS/ds = (1/11) db/dt B=
]| B || and Bp = ymv/q (rigidity), b= B/Bp and
b” = B”/Bp (2) becomes

I =0/

Bp=(1+7G)8+G(1-7b  (3)

and (1) can then be written
§'=Sxd 4)

This equation is solved by Taylor expansion of S

S(My) = S(Mo)+ 5 (Mo)ds+5"(Mo)ds® /2+ .. (5)

which gives the spin S at point M; from its value
at point My, after a step ds. The derivatives §tn)
involved in (5) are obtained by differentiating (4) :

.
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iny

S"=8xd+

-+

G = § x w428 x4+ 85 x T ete.. (6)

where (3) provides the w(™); the normalized field b
and its derivatives 5(®) are intrinsically provided by
the code (they define the magnetic element of con-
are given by

cern); noting @ = , I;“ and I—J\"in)

- —

by = (b-@)ii, b = (V- d+b @)+ (b-B)T, ete... (7)
I I

3 THE RAY-TRACING CODE ZGOUBI

Zgoubi [2] has been used since long for ray-tracing
in beam lines and spectrometers. The numerical
method described above is drawn from that used in
Zgoubi for solving the Lorentz equation (normalized)

O =uxb

(8)
by Taylor expension of the vector position }?(1\‘11)
R(My) = R(My)+ iH(Mo)ds + @ (Mo)ds?/2+ .. (9)

This resulted in a straightforward implementation of
the spin tracking [3]. Fig. 1 gives an illustration of
ray-tracing in the measured 2-D field maps of the
QDD spectrometer SPES 2 [4]. Upon spin tracking,
such results as mean polarization matrices can be
obtained (Table 1).
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Fig. 1. The QDD spectrometer SPES 2 of Labo-
ratoire National SATURNE. Particles with different
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initial coordinates are ray-traced with Zgoubi. Those
travelling in non homogeneous field regions experi-
ence slight depolarization (Table 1).

700 MeV/e 826 MeV/c
yYGa = 234.82° yGa = 250.93°
0.94 -0.01 000 094 000 -0.02
0.00 099 001} 0.01 099 0.00
000 -001 094 |-0.02 -001 095

Table 1. Average polarization matrices [S] of SPES 2
(such that (< Sz >, < Sy >, < Sz >)socat plane=
[5] (Sz, Sy, Sz),a,get), for two momenta: 700 (cen-
tral momentumn) and 700+18% MeV/c. The means
< > of the polarization components at the focal
plane are calculated from a sampling of 200 parti-
cles leaving the target at angles randomly distributed
within the acceptance of SPES 2 (& 50 mrd horizon-
tally and vertically). vGea is the spin rotation of a
particle undergoing an horizontal deflection «.

4. MULTITURN TRACKING IN SATURNE

Zgoubi has been improved in order to provide op-
tions for multiturn tracking [3], thus allowing the
analyzes, and correction study of resonant depolar-
izations. This is illustrated by the study of the res-
onance Y = 7 — v, in the synchrotron Saturne [5]
(Fig.2). Details of these investigations are given in
Figs 3-5 and their captions. We show the stability
and accuracy of multiturn particle tracking in terms
of emittance preservation. We then study the static
case at the vicinity of the resonance, and its related
formulations [6] and show the agreement of depolar-
ization crossing with the Froissard-Stora formula [7]
and its alteration by momentum dispersion. Finally,
spin tracking is performed through two strong neigh-
bouring resonances (Fig. 6).

PERTURBED OPTICAL FUNCTIONS
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Fig. 2. Optical functions of Saturne Synchrotron, as

obtained from preliminary matrix calculations: their
values at s = 0 are 3, = 15.18 m, v, = 0.581 m~!
(horizontal) and 8, = 2.063 m, v, = 0572 m™! (ver-
tical), including a gradient perturbation of 1% in the
second quadrupole. The tunings are v, = 3.6375,
v, = 3.6089. The v( = T — v, resonance strength,
as calculated analytically [6] for ,/7 = 12.2 10~
mrd is | € |= 2.98 107, and the Froissart-Stora for-
mula 7] gives S,/So = 2 exp(—7 m | ¢ |2 / 2GpRB)
= 0.443 (for B = 2.1 T/s, p = magnetic radius =
6.3381 m, R =geometric radius = 16.8 m).
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Fig. 3. Tracking of a particle over 3000 turns, with
the code Zgoubi. These preliminary calculations show
how precisely the first order parameters and motions
are reproduced by the multiturn ray-tracing. (A)
Horizontal phase-space. The particle starts near-by
the betatron closed orbit and with zp = z§ = 0. Due
to the numerical imprecision the 3000 points undergo
spreading, but with negligible extent (¢./7 ~ 0).
(B) Vertical phase-space. The particle starts with
z0 = 4.58 1073 m, z{, = 0. A least-square fit by the
ellipse v,2% + 2a,22'+ B,2"%= ¢, /7 gives 8, = 2.05
m, v, =0582m ! ¢, /7 = 12.2 1075 m.rd in accor-
dance with the preliminary matrix calculations (Fig.
2). (C) Tune numbers obtained by Fourier analy-
sis of the phase-space ellipses for ¢./7 = ¢, /m ~ 12
1078 m.rd: v, = 3.6375, v, = 3.6088; again these
values agree with those of Fig. 2. (D) Longitudinal
phase-space. The particles are accelerated at 1405
eV/turn (B = 2.1 T/s) with a momentum disper-
sion of 5 10~* (1), 1072 (2), 1.65 10~3 (3) (out of
acceptance); note that analytical calculations give
a momentum acceptance of 1.65 10~2. These four
figures do prove the stability of the numerical ray-
tracing, in terms of preservation of the emittances.
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Fig. 4. Depolarization in the vicinity of vG = 7~ v,
in the static case. Particles starting with ¢, /7 = 0,
£./m=12.2107% m.rd and spin vertical, are tracked
over 104 turns, for several values of A = G — 7+ v,.
{A) S. oscillates around the local eigenvector with
a period P(turns) = (A? + |¢|?)~"/2, and reaches
the asymptotic mean < S, >= A%/ (A%+ | ¢ |?) [6].
Fitting these two equations with the plots gives | ¢ |=
3.310* and v, = 3.608, which is in good agreement
with the results stated in Figs. 2 and 3. (B) Plot of
the theoretical curve < S, > v.s. A, together with
the “experimental” points derived from Fig. 4A, for
showing the good agreement between numerical and
analytical calculations.
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Fig. 5. Crossing of yG = 7T—v,, at B = 2.1T/s. (A)
£,/m=12.2107% m.rd. The strength of the resonance
is | £ |= 3.3 10™* as derived from the static case (Fig.
4). As expected from the Froissart-Stora formula [7],
the asymptotic polarization is about 0.44. (B) The
emittance is now ¢, /7 = 1.2 107% m.rd; comparison
with {A) shows that | ¢ | is proportional to \/€,, in
agreement with the theory [6]. (C) Crossing of this
resonance for a particle having a momentum disper-
sion of 1073,

Fig. 6. v, is now 3.88. The plot shows the vertical
spin component of a particle starting with its spin
vertical and e, /7 ~ 0, €, /7 = 25 107 m.rd (A) or
200 107% m.rd (B), when crossing successively the
two systematic resonances v,, 8-v,, at B = 420 T/s
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{not realistic but allows faster tracking), with | ¢ |~

0.03 for both. The distance between the two is 8-

2, =8]e|(A), or 2.8] e | (B).

5. CONCLUSION

The method of spin tracking described in this note
has been implemented recently in the ray-tracing
code Zgoubi, and work still remains to be done about
checking its efficiency and accuracy. It henceforth
appears to be a powerfull and promising tool, worth
being utilized in the field of depolarizing phenomena
and their compensation or corrections.
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