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Abstract 

A general analytical expression for current waveforms of 
the longitudinal particle-beam pulse (i.e. the line density) in a 
synchrotron is derived for an arbitrary particle distribution in 
canonical phase space, that is a function of the Hamiltonian 
alone. Pertinent bucket parameters, as synchronous phase 
angle, and bucket filling enter. In principle, this approach 
permits to also treat the inverse problem, by which the phase 
space distribution may be inferred from a known (e.g. 
measured) beam-pulse waveform. In model examples, the 
beam-pulse waveforms’ center-of-charge phase, and their 
fundamental (h=l) phase arc compared with the synchronous 
phase for a harmonic rf voltage. While the former two phase 
values differ only slightly, there is a considerable discrepancy 
between them, and the synchronous phase, even at only 
moderate bucket fillings, and moderate acceleration. This 
entails, in effect, a sizeable, time varying phase slip during an 
acceleration ramp from injection to top energy, if no 
synchmtron-phase control loop is employed. 

1. PREREQUISITES 

Let the rf bucket be characterized by the Hamiltonian in 
reduced form, ~~11: LXme [l], whose notation will largely be 
followe4i: 

H* = ; - Y(+) = $ - sgn(q) [l?$ + G(Q)] , (1) 

where the paramater 11 is defined such that, 7 > 0 below the 
gamma transition, i.e. q = y2 - ytre2. The quantity -Y(4) 
constitutes the “potential” term in the Hamiltonian (1). In 
the stationary and adiabatically time variant case, beam 
particles move along phase trajectories, determined by H* = 
C, i.e. by the family of curves y(C,Q) = ~(2jC+‘I’($)]J, or 

Y(C&) = fi i? + w(q) U3 + G(Q)1 . (2) 

More precisely. y(C&) is defined as the real part of the 
R.H.S. of (2), vmishing for negative definite expressions 
under lhe roof. Let us suppose now, that the beam particles 
populating the phase space region delimited by the interval 
[C,C+AC] have the (equilibrated) density p(C). While the 
potential -Y(4) i,s a property of the bucket, p(C) is clearly a 
particle property. 

To determine the beam-pulse waveform, we seek the 
projection of this density p(C) onto the phase (or s-, or time-) 
axis, as schematically shown in Fig. 1. The number of all 
particles enclosed by the intervals [C,C+AC] and [&++A$] is 
F(4) A$ = Cip(Ci)Ay(Ci,~) A+, defining the projected density 

Ft+) = & &) aY(cN 
ac ’ 

by expanding Ay(Ci,~) = y(C;+AC,4) - yiCi,~) of Fig. 1 

Fig. 1: Schematic depiction of longitudinal phase space 

The integration limits in Equ. (3), Cmin and Cm,,, follow 
from the condition that a stable phase space distribution p(C) 
exist, i.e. from the stable and unstable potential points, 
respectively, 

aH* i-1 a+ 
= 0 

(4 

from which, in turn, will result, the conditions for Qnlin and 

4 max’ i.e. ytfbmjn/max )’ = r+G’(~,nin/max) = 0. With 
these, we arrive at Ch and Cm,, 

C min/max = -y(4$nin/max) 
= - SgntTO WQmin/max + G(Qmin/max)l (3 

In Fig. 2, the potential functions of the bucket, -‘Y(q), for 
7~0 and ?J>O are depicted. Also, examples of phase space 
densities p(C) are shown schematically. 

Now, for a harmonic rf voltage, I- and G(Q) become I- = 
sin qs and G(+) = cos$. Consequently, from Equ. (5); the 
relation sin & = sin ~min/max must hold for both $min and 

0 max, whence we get ~min = Qs and emax = 4” = x - Qs. TO 

clarify our notation: the phase values ~min = es and Qmnx = 
&, (=x-4, for harmonic rf) correspond to the minimum and 
maximum porential value Cmin, and Cm,,, respectively. In 
contrast, the smallest (for TN), or largest (for 11~0) attainable 
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phuse value, qe, follows from the second solution within the A~=9fall-~rise, with ~rise,fall following from the fraction v 

bucket of Fqu. (5) for C=C,,, $=&i,=$u (cf. Fig. 2): (a~, e.g. v=O.l) via F(4,ise)/F(4s)=F(4fall)~(4s) = V. 

C ma = - w”(W P-4, + G(4,)l = - sgntq) [W, + G(&.)l. (6) 

phase 4 
Fig. 2: Potential functions versus phase for n>O and r1<0 

With the :specific square-root form of y(C,$) [Fqu. (2)], or 
via partial integration, the projected density distribution F($) 
lEqu. (3)] may be re-expressed as 

rCmu r6U 

F(4) =Jczg) = -Jz F YK4)+lmY~c,4 )I& . (7) 

Since y(Cmin,$)GO, the lower limit product on the R.H.S. 
disappeared. For the upper limit product one must observe 
that the limit condition for p(C,,,+ E)=O or.&& the bucket 
holds for stability reasons, but a finite limit value inside the 
bucket is allowed, i.e. lim,.u p(C,,,- E) f 0. 

The extrema of F(4) occur subject to the condition 
Sy/&=O, or I’+G’($)=O, and thus at the phase values &, +“, 
and 0,. For the first, F($) has a maximum, F(&), while 
minima for 41u, and & (or, at least, edge minima). 

Once the distribution F(Q) is in hand, a number of 
relevant quantities may be computed in terms of moments of 
F(4). Denoting the n* moment by 

I 

x 

(4”)= do4”W) , 
-x 

(8) 

the norm of F would be (1). The average phase angle is then 
$I~=($)/{ I), describing the beam pulse’s center of charge (in 
radians). On the other hand, the phase of the h* harmonic of 
the waveform is computed from the Fourier decomposition, 
h=arctg( (sin(h+))/(cos(h~))). The duty cycle may be defined 
as T=(1)/[2rrF(t$s)J, while the root-mean square deviation, 

W,,=~‘i K$*HO)*l/W) t would be a measure for the beam- 
particle pulse width (or length, in radians). A different, yet 
also common measure for the pulse width is the difference 

2. SPECIFIC PHASE SPACE DENSITIES p(C) 

To get an impression of possible projected distributions 
F(e) following from Equ. (7). a specific phase space density 
distribution p(C) has to be assumed. For its simplicity, we 
fit choose a rectangular distribution, i.e. a distribution p(C) 
that is constant up to a certain point C=C*, dropping 
thereafter abruptly to zero. Subsequently, the general case is 
treated, where p(C) is allowed to be any power series of 
arbitrary order in C, for which the resulting F(Q) is given 
explicitly, again in terms of a power series. As an example 
for this general result, the results for a triangular, and a 
parabolic distribution are presented. Finally, the possibilities 
for an inverse approach are discussed. 

2.1. Rectangular (Constant) Density Distribution 

We set p(C)=1 for C,in<C<C*, and p(C)=0 for 
c*<cIc,,,. In Fig. 2, the various limit quantities of C 
and I$ are clarified in an example for q<O. In this simple 
case, the projected density F(Q) of Equ. (3) turns into a 
complete integral, F(I$) = ~(C*,$J). The density F(+) is real, 
and therefore non-zero only for the range ~,*~~~~,*~,,,,x 
(for rl>O), and I$~*LQZ$~*>$ max (for n<O). We may 
introduce a fill fraction CL, such that the “fill level” in the 
bucket is at Cu<(maximum bucket height) to get 
c*=pc max+(l-PL)C,in~ (Different definitions for the fill 
fraction according to bucket area or volume are also 
conceivable.) Substituting for C,in and C&x from Equ. (6) 
results in the general value C* or, re.spectively, in the value 
C* for harmonic rf voltage, 

c* = -%n(l7) ~Il4+,+(1-~)4,lr + ~34~) + (lq.OG(4Q) 
= -W(q) ([WC + (l-21.L)4Sl sin+, + (3-21.1.) COB&.! , (9) 

and finally, with Equ. (2), in the projected distribution 
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Fig. 3: Line density waveforms for various bucket filling 



(10) 
omitting the general rf case for brevity; it follows directly 
from Equs. (2) and (9). In Fig. 2, the levels of C* for p=l, 
p=3/4, p=l/2 and ~=1/4 were shown schematically for rl>O. 
In Fig. 3, the projected distribution F(r$,p) is depicted for 
these four fill factors l.~, for a synchronous phase of 9, = 15”. 
We observe that the pulse center of charge (PC, and the phase 
of the fundamental, $n=l, are shifted away from t& to higher 
values for increasing bucket fill fraction u, which is shown in 
more detail in Fig. 4. 

,’ ’ 

25. 
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Fig. 4: Synchronous, center-of-mass, and fundamental phase 

2.2. Arbitrary Dekty Distribution 

For the general case of an arbitrarily variable density p(C) 
we only shall assume, that p(C) is given in form of an 
arbitrary power series in C-C,;,: 

p(C) = I; p(c - Cmin)n . (11) 

With iT:and with F($,p=l)=y(C,,,,o) [Equ. (2) for 

c=Glax 1, which is not restricted to harmonic rf, we get for 
the projected distribution from Equ. (7): 

F(o) = - ~F(o.1)” xx (n+l) pn+i In(o) +F($,l) p!C& . (12) 

The integrals I*($;~2F(~,1)-3JdC[(C-C,in)ny(C,~)] are 
evaluated by binomial expansion, 

with ‘l’(o) folloswing from Equ. (I), and Cm,x,min from 
Equ. (5). 

2.3. Examples: Linear and Parabolic Density Distribution 

The constant ‘density of Sect. 2.1 is of course a special 
case of Fqu. (11) for p@, pn+o=O. The next simplest case 
of expansion (11) is a phase space distribution p(C) which 
drops linearly in C, i.e. p(C)=l-(C-Cm~)/(Cmax-Cmin); all 
pn,l vanish. Since p(C,,x-C,h)=O. the second term on the 
R.H.S. of Equ. (12) disappears, while the only non-zero 
integral is I,($)= l/3, independent of 4. Thus (disregarding an 
unessential normaliration constant) 
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FA@‘) = WW3 9 (14 

NOW we consider the case P(C)=l-[(C-C,~)/(C”,,,-C~,,i*~)]*, 
i.e. a parabolically varying distribution, with pl=O, pn,2=0. 
Here, I~(~)=~gn(~)~(5~,-34,-2~)~+5G(4~,)-3G~9,!-2G~4~1/15. 
Again aside from a constant, the pulse shape becomes then 

For harmonic rf, both the shapes of F*(G) and F,-,(o) [i.e. for 
“triangular” (linear), and “parabolic” p(C)] are compared with 
the “constant” case for p=l from Equ. (10) above. 

_ - 
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Fig. 5: Line density for simple distributions p(C) 

For 4i,=15O, one obtains the phase values &1=20.24”, and 
@,=21.03’ (A) and 1$~=1=21.23”, and $,=22.OY’ co), which 
are to be compared with Fig. 4. 

2.4. The Inverse Problem 

So far, we assumed a phase space density p(C) to arrive at 
the line density F(4). Of diagnostic interest is, however, the 
reversed situation, since the line density can be measured. For 
this objective, a numerical approach has recently been 
proposed, [2] although restricted to elliptic phase space 
contours (i.e. a small phase angle or harmonic limit). 

If we assume that p(C) goes smoothly to zero, as C 
approaches Cm,,, then the second term on the R.H.S. of 
Equ. (12) vanishes. The remaining sum C(n+l)p,+ll,(Y) 
constitutes an expansion in the polynomials I,(‘l’) of order 
Ym. Thus, these polynomials are linearly independent, which 
is necessary for putting an inverse procedure on 
mathematically sound footing. Therefore, from the “reduced” 
beam pulse shape F(+)/F(+,1)3, we can, at least in principle, 
determine uniquely the expansion coefficients (n+l)p,+1/2 to 
the polynomials In(Y), to find p(C) from Equ. (1 l), to within 
one (arbitrary) normalization constant po. 
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