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Abstract 

The effect of the parasitic skew gradient in the LEP vac- 
uum chamber is now well compensated. The principle was 
to select the integer parts of the betatron tunes (71/77) 
such that the betatron motion becomes mostly insensi- 
tive to the zero and first harmonics of the skew field. 
The residual coupling is corrected with the available skew 
quadrupoles. The drawbacks were to enforce tune values 
which were uot optimal for performance and prevented po- 
larization at the 2’ peak. In 1991, the tunes were changed 
from 71/U’ t’o 70/76 with a resulting performance improve- 
ment; the required tune difference caused however the ver- 
tical tune to become a multiple of the machine superpe- 
riod, making the machine rather sensitive to imperfections. 
In this paper, we describe an alternative solution which 
consists in departing from the equal betatron phase ad- 
vances in th,e cells to make possible a cancellation of the 
betatron coupling over each arc. The tunes become free 
parameters that are optimized for highest performance and 
polarization at the 2’ peak (78/78). 

1 THE COUPLING SOURCE 

LEP is operated at low magnetic field to reduce the energy 
loss by synchrotron radiation. It is thus sensitive to small 
field perturbations. The most noticeable one was identified 
during the commissioning. A thin nickel layer on the vac- 
uum chamber of the dipoles was found magnetized in such 
a way as to create skew multipoles. Beam measurements 
[l] allowed to evaluate the skew quadrupole and sextupole 
components (figure 1). There were 5 measurements per 
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Figure 1: ,4zimuthal distribution of the skew gradient 

arc in arcs 2, 3 and 4, and one in the others. Figure 2 
shows the azimuthal harmonics of the skew gradient. The 
dominant components are the zero harmonic, and to some 
extent the first harmonic (modulo 8). 
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Figure 2: Spectrum of the parasitic skew gradient 

2 STRENGTH OF THE COUPLING 

The LEP working point being close to the linear difference 
resonance 

he..Q,-- Qy -pc.l, (1) 

the betatron coupling is well parameterized by its complex 
coefficient [2]: 
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R is the average machine radius, ,0, p and Q the usual 
betatron parameters, 6 the azimuthal angle and K, the 
skew gradient. 

Expression (2) may be simplified by observing that K, 
is different from zero only in the arc FODO cells where the 
function pl/3, has the explicit form, for equal horizontal 
and vertical phase advances: 

Bz& =/~FPD [1+4sin’ (;) tan2 (G) (i)‘(i -1,‘] 

(3) 
0 is the cell phase advance, PF and pD the maximum and 
minimum of the p function and L the half-cell length. For 
p = 60°, /3& is constant and equal to PF/~D to a very 
good approximation. 

A further simplification arises from the symmetry of the 
betatron phase advance. Although LEP is 4-fold symmet- 
ric, it was designed with a natural symmetry of 8 for the 
phase advances. Taking advantage of this symmetry and 



703 

4.1 Optimal betatron phase advances combining (2) and (3) yields: 

c = T ~c-i~~~ /,“*-’ K,(e+j~)ei(r.-c.-Aee)de 
j=O 

(4) 
Since K, has a relatively simple spectrum, it is worth de: 
veloping it in azimuthal harmonics K,: 

?%=+a, 
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with 
n=+co 7 

~II~(~ - n) = C xeij:(p-n), 
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a function which vanishes except for (p-n) = 8E, k E Z. 

3 MINIMIZATION OF THE 
COUPLING 

3.1 Minimization over one turn 

The betatron phase advances between arcs are chosen to 
create overall compensation. This is achieved by select- 
ing p in such a way that IlIs(p - n) vanishes when K, 
is large. This method, chosen during the LEP commis- 
sioning, is economical as it involves rematching only the 
non-experimental straight-sections of LEP. To avoid Ko, 
K1 and their harmonics, we had se!ected QZ - Qy = -6 
instead of the canonical -8. This compensation has been 
extremely efficient. The purpose of another strategy is 
to achieve the same result, but without constraining the 
tunes. A difference of 6 entails either odd tunes, which are 
not optimal for beam-beam, or one of the tunes being a 
multiple of the LE:P periodicity. With the advent of polar- 
ization and the installation of a pretzel scheme, the tunes 
are even more constrained. 

3.2 Minimizafion in one arc 

Apart from arc 4, the parasitic skew gradient is measured 
or expected to be rather constant in each arc, though at 
different levels. The decoupling conditions may be found 
using equation 4 where the term in Ae6’ is neglected (Ae RZ 
0.1). 

NJ+= -a,,) = 2kr, k E Z 

with N,, number of FODO cells in the arc. 

(6) 

4 IMPLEMENTATION 

Departing from t’he canonical 60“or 90Ophase advance per 
cell perturbs the arrangement of the sextupole families 
in achromats and may thus reduce the dynamic aper- 
ture. The chromatic aberration is dominated by the ver- 
tically focusing insertion quadrupoles. The vertical beta- 
tron phase advance of 6O’was thus kept and the horizontal 
phase advance adjusted to satisfy (6). 

LEP departs from the simple model used so far by the dis- 
persion suppressors cells, which are not periodic and where 
the parasitic skew gradient is weaker. The optimal phase 
advance difference was found by an optimization process 
(table 1). The distributed skew gradient was represented 
by two thin skew quadrupoles in each half-cell, i.e. in to- 
tal over 1000 elements. The horizontal phase advance was 
varied to yield the smallest tune approach, used as a crite- 
rion of decoupling. This procedure involved rather heavy 
calculations to match the varying arc to the insertions, 
which were conveniently carried out with MAD [3]. The 

Table 1: Coupling versus optics and phase advances 

Optics Qz Qv 9% a, ICI 
design 70 78 60’ 60’ 0.60 

nroduction 70 76 60’ 60’ 0.050 

gain with respect to the design optics, which, due to its 
betatron tunes of 70 and 78, was sensitive to the zero har- 
monic of the parasitic skew gradient, is of two orders of 
magnitude. Optimizing beyond the value of ICI G 0.03 is 
actually not significant, as the precision in the knowledge 
of the skew gradient is not better than 5% 

4.2 Parasitic vertical dispersion 

The spurious vertical dispersion, which drives the synchro- 
betatron resonances, is not affected, as the vertical beta- 
tron phase advance is not changed (table 2). 

Table 2: Calculated parasitic vertical dispersion 

Optics < 0; >‘p cm ’ 
physics 3.00 

ontimised 2.68 1 

4.3 Retatron tunes 

With the increased horizontal phase advance, tunes of 
78/78, equivalent to the design tunes 70/78, can easily 
be produced by adjusting the low-p and high-p insertions. 
These tunes have the further advantage that the effect of 
the systematic spin resonances [4] on the polarization at 
the 2’ is minimized. 

4.4 Chromaticity correction 

The LEP sextupoles are cabled in 6 families to provide 
the necessary parameters to correct the chromaticity on 
the 60’ lattice. To avoid recabling, the correction of the 
chromatirity was attempted with the present scheme. 



In spite of the sextupoles of the same family not being 
well in phase with respect to the off-momentum o-beating, 
an acceptable solution could be found owing to the smaller 
chromatic perturbation of the horizontal motion. It was 
further improved by increasing the ,B: by a factor of 2, 
changing the optimal coupling from 4% to 2%. The Q(a) 
characteristics are rather similar to that of the produc- 
tion optics (figure 3) and so are the dynamic apertures 
expressed in beam rms width (figure 4). 
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Figure 3: Tunes variations with 6 on the new and reference 
optics 
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Figure 4: Dynamic apertures of the new and reference 
optics 

5 EXPERIMENTATION 

Within a few hours, a circulating beam on a well corrected 
orbit was obtained. Without much optimization of the 
tunes, chromaticities, . . . , a beam current of 550 PA in 
four bunches. could be accumulated, very close to the per- 
formance of the production optics. 

The residual betatron coupling is expected to stem not 
only from the parasitic skew gradient, but also from the tilt 
of the quadrupoles and the vertical orbit deviations in the 
sextupoles. For the observed vertical orbit ( R,,, = 1.16 
mm), the expected coupling contributions are: 

l 0.0019 from an rms tilt of 0.1 mrad ofthe quadrupoles 

. 0.0040 from the orbit displacement in the sextupoles, 

l 0.006 from the parasitic skew gradient. 

The total betatron coupling should thus be ICI = 0.0074 
A standard closest tune approach was performed to mea- 

sure the actual value of /cl (figure 5). 
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Figure 5: Closest tune approach 

The result of 0.0076 is equal to the expectation within 
the measurement errors. The closest tune approach was 
further minimized to 0.0027 by exciting the standard skew 
quadrupoles of LEP (solenoid compensators). 

6 CONCLUSION 

The split of the horizontal and vertical phase advances of 
the cells very efficiently weakened the effect of the para- 
sitic skew gradient. In the mean time, new requirements 
have appeared for the LEP optics (pretzel scheme, energy 
increase) which all require stronger focusing to decrease 
the horizontal emittance. Phase advances of 90’/45’ or 
90°/600 which satisfy (6) are being studied. 
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