
658 

Theory of the Tune Shift Due to Linear Coupling* 

G. Parzen 

Brookhaven National Laboratory 
Upton, NY 11973, C’SA 

‘4 bslract 
This paper prrsrnts analytical perturbation theory results 
for ~1, v2) tllcy turic in tune presence of linear coupling. 

1 INTRODUCTION 
The presence of skew quadrupole fields will linearly couple 
the T and I/ motions. The I and y motion can then be 
written as I,he sum of two normal mode~‘~~ which have 
thr% t,uncs L/~ and ~2 which are different from the tune, 
U,,L+ll in thr> absence of the skew quadrupole fields. 

This pG+prr presents analyt,ical perturbation theory 
rf‘sults for ~1, ~2. The rcxu1t.s for ~1, ~2 are first found cor- 
rc’ct to lowest order in the skew quadrupole fields. Thr 
rrsults for ~‘1, ~2 are then carried one step further to in- 
cludc~ t,hr rlcxt highrr order terrtls in the skew quadrupolr 
fields. 

‘I’ht=se analytical results show that for the higher 
or&r shift in tune the important harmonics of the skew 
quadrupolr field are the harrnonirs near V, + v,, Ilowrvcr 
the harmonics closest to V, + vY do not contribute to the 
highc~r order tune split,ting, Iv] - w/, as they shift v1 and 
~2 about equally. This results in a lack of a dominant 
harmonic for the higher ordrr contribution of Iv1 - ~1, 
which complicates the understanding and correctiorl” of 
t.hc higher order contribution to )III - v:! 1. 

Analytical results arc found for t.hrt residual tune 

splitting which is the Iv1 - v?( that, remains after the 
driving tcarrrl of the nrnrby diffcrc,rlFcb resonance has been 
corrected. 

2 LOWEST ORDER SOLIJTION FOR THE 
MOTION 
‘Iliv equations of rnotiorl ran br writtclb a.c 

x=d$, !J=/$tzy 
@z = J ds (l/i&A.) = &/v, (2.1) 

Q, = J ds(l/~,By) = $ylvy 

bc (4 = +% VU%,, 112 (a,/~) 
by (s) = @y L&P,) 112 (al/p) 

The skew quadrupole field is described by (11 (s). On 
the median plane, the field 8, is given hy 

B, = -Bo al x , 

where Ro is the rnain dipole field. p is the radius of 
curvature in the main dipole. 

To simplify the solutions of Eq. (2.1), we introduce 
c, and c, such that 

‘jr = i, + C.C., fly = c, + C.C. (2.2) 

i, and i, also satisfy Eq. (2.1). In addition, when 
al = 0, the solution for c,,c, is 

c, = Aexp(iv,t?,), c, = Bexp(i~~B~) (2.3) 

We are looking for a solution of Eq. (2.1) which 
is valid when v,, v,, are close to the coupling resonance 
vz - I+ = p, p being some integer. The solution for c,, c,, 
will hc assumed to have the form 

Cz = -4, -p (i+s@,) + x4 exp (~~r,r~z), 
r#t 

iy = R, rxp (iVy,se,) + x 13, rxp (iuy,.f?,) (2.4) 
r#z 

V-J,, - vy,s = P 

The A, are assumed to be small compared to A,, and the 
B, small compared t.o R.,. v,,,, v~,~ NilI give the v-values 
of the normal modes. The normal mode V- values are v,, 
~2 and we assume ~1 -+ V, and ~2 -+ u,, when al -+ 0 
then v,,, -+ pz for the ~1 mode, and wv s -+ u ,, for the vi 
mode, when a1 -+ 0. The justification for choosing this 
form for the solutions, and the choice of the v=,, and the 
vy,r present will come out of the solution one finds using 
this form. 

The v,,, and uy,r for r # s will be seen to have the 
form 

h,, = v,,, + n Vy,r = vy,# + m (2.5) 

where n, m are integers. This could be assumed from 
the beginning. An alternative procedure is not to restrict 
uzpr an d ~y,r, and to make the exp (i~~,,e,) an orthogonal 
set by choosing v,,, = (2a/T)p, Q is some integer and 
T is some very large angle, and treating vy,r similarly. 
Putting Eq. (2.4) into Eq. (2.1) and using the orthogonal 
property, one finds 
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($,r - v,“) Rr = -2v, c b, (vy,r, Y,,,!) & 3 HIGHER ORDER SHIFTS IN vl & v2 
7’ To find a higher order result for ~1 and ~2, one has to find 

b, (VT,,, vy.rO = s 
J 

1 
dQ,P, (PA’,) f (2.6) 

higher order equations for A,, R, by putting the lower 
order solution for A,, R,, r # s, given by Eq. (2.7) into 

0 

(~I/P)~xP [i (-v,,,B, + q,r~&Il 1 Eq. (2.6). 
Eq. (2.7) for il,, H, can be somewhat simplified 

by (vy,,> “z,r’ ,=gT &P, (PzPy ) * by assuming that w,, wv are close to the resonance line 
Y z,J = vY,S +p so that, one can spume that v,,, z V, and 

(atlp)exp ii (-v~,~Q, + v,,+ #,)I yY,$ 2 vY and then 

In Eq. (2.6) we assume B, << B,, A, << A, for 
r # s and find the first order results -‘kbz (vr,r, vy,s) 

(2s - v:)l d4, = -2vzbr (vr,s, vy,s) B, 
il,= (n+u,+v,)(n-p)ll”“l#P 

-2+,b, (~y,r , vc,,) 
(3.1) 

(l& - v,‘) B, = -2u,b, (vy,>, u,,,) .4, 

(& - vf;l A, = -24, (us,,, vy,s) B, 
(2.7) Br = (n+v,+Uy)(n+p).il,,n#-p 

(u,” r - $:I & = -‘Jvyby (vy,T, vz,s 1 A 
where v,,, = vY,s + n and vy,r = v=,~ + n. 

Putting these results for A,, B, in Eq. (2.6) one 

The first two equations in E,q. (2.7) are homogeneous finds the improved equations for ,4,, R, 

equations for ,4, and B,, and the V- values II,,,, vY,s are 
determined by requiring the matrix of the coefficients of (& - 4 -AL) .4, = -2lj,b, (v,,,,vy,s) B,. 
il,, B, to vanish. This gives 

(& - v; - A,) H, = -2v,b, ( v~,~, v,,, j A, 
(3.2) 

(& - y;7) (v,2 J - v,“, = 4Wy IAv (4-J vy,.r) I2 

1 
A~((yz,,, $,J) I= - 

J 

2n 

4T 0 
d4LPy)3 

o-8) A, = 4urvy x Icn I2 

(al/p) exp [i(-v,,,@, + +,s@y)l 
nf-p (71 - VT - uY)(n-p)’ 

v,,s - vy,s = 7) A, = 4V,Yy x lb” I2 

Eq. (2.8) can bc simplified by assuming that v,, vY are 
n,-p(n-v,-vyH7~+7~7 

close to the resonance line v,,, - vv,$ = p and v,$, N V, 
and uY,s = vy. Keeping terms of lowest order only, one 

b, = & 
J 

ds al (1?&)* rxp [i ((71 - vy)B, + VY 0, )I 

gets 1 
c ds al (&&)” cxp[i((rt - vc)B, + IQ,)] 

(vr.3 -h)(Vy,3 - vy) = lwb,s,%)12 
” = G J 

(2.9) 
UT,, - vy f q = 1’ 

Lq. (3.2) gives the equation for v,,, and vy,s 

Eq. (2.9) has t.wo soh~tions for v,,,, vY,$. WC denote by 
q the value of L/,,~ that, goes to u, when al - 0, and (& -- “I - A,) (&, - u,” - A,) = 3V,Yy(AV (UT,, uy,a) I2 

~2 the value of L’~,$ that goes to vY when a1 --+ 0. The ux:,?l = uy,s + p (3.3) 

solutions can bc >written as 

“~=;,*{~~~~-;Y-P)l+ill:Oi,Yyl12}~, 

Eq. (3.3) was obtained by using the result for .4,, 
B, which is first order in al. By iterating Eq. (2.6) one 
can find a result for A,., El,. to second order in aI which 
will change Eq. (3.3) by replacing AV by 

AU - AU + Avc3! (3.4) 
where Avc3) is third order in al. By going one step 

v,=(v,+vy+P)/2,i-iy=(Vy+V,-p1))/2 (2.10) 

For the 7fI, the + sign is used when V, > vY +p for ~1 and 
the opposite sign for v?. In AV (v,,, 1 vY $), v,,, has been 
replaced by V,, and v~,~ by ~~~ which introduces a higher 
order error that can 1~ neglected 

From Eq. (2.10) one finds 

further and iterating Eq. (2.6) to find results for A,., B, 
to third order in aI will change Eq. (3.3) by replacing 

Az, 4, by 

& - A,+A$?AY -+A,+Arj (3.5) 

where AI’). A!j”) are fourth order in nl. One can 

write down all thesr highrr order terms IIowevpr, the 
expression Eq. (3.3) keeping terms up to second order in 
nl is probably sufficient here. 

One should also note that in Eq. (3.3) v,,, and I+,$ 
also occur implicitly in AV (v~,~, vY,$) which complicates 



the solution of Eq (3.3) for v,,, and v~,~. Solutions can 
be found depending on the size of AV and the distance 
from the reslsnancc lint vZ = vY + p. 

One int~~trcsting case is when a 2 family a1 correction 
systenl is used to make AV = 0, and when v,, v,, are 
very close to the: rr‘sonance line V, - vY = I), so that 
~1 = u, and u2 = vy with an error that is second order 
in al. Very close to the resonance line, so that in 
Eq. (2.10) iv= - Yy - p)2 /4 can bf: neglected compared 
t,o lAvj2, then the above C-WI he achieved by making 
Av(V,,V,) I= 0 as shown in Eq. (2.10). 

‘fhis corresponds roughly to the situation when a 2 
family nl correction is used to cancel the driving term 
of thr nparby difference rcsonancr, V, - vY = p, In this 
situation, one can find the, shift in v,,, and v!, d due to the 
srcond ordr,r AZ, Ay. Then in Eq. (3.3) Av[v,,,, uy,#) is 
not zero but differs from zero by terms of order a:, and 
thus IAvl’ i,i of order a:. For this result, the previous 
obsc:rvation, that higher order trrms can only change the 
AL/ t<Trrri by AU’“), a term of third o&r, is significant. 
As lAv/ ’ is of order ut, one can treat it as being zero, 
and Eq. (3.3) becomes 

(v,‘,, -- u,’ - A,) (v2 Y,J - v; - AY) = 0 . 
which givc5 the normal IILO~C!: 

(3.6) 

1 
UJ = L', + -A,, 

1 

‘Lv, 
v2 = vy + -A,, 

2v*, 
Thus for the case when AV = 0 and closhto the resonance 
line. thc,rt, is a second order in nl shift in the v-values 
given by A,/2v, and AY/2uY. Eq. (3.2) for A, and 
A, show that they IargPst, sc~cond order v shifts will come 
from harmonics in a, close to V, + v,,. The driving terms 
b ,, and c+,, for TI closc,st to V= + oY contributr most to the 
second order v shifts. 

Oric> rr~aj also rii.lt 1ci3 that h,, , c,, , as givcsn by Eq (3.2), 
art’ just. t,hc usr~al stophand results for the V, + v,, = 
II rpsonanc(’ but f,valuated at particular 1)oint.s on the 
rtsonanco lint. b,, corresponds to the point 71 - vy, vY and 
c,, 1.t) the point I/, , tl - v,. For the, IL values corresponding 
tn rt’sonancr lines closest, t.o t.hp unperturbed L’,, vY, these 
point.s on thr resconance are not far apart, aud the b,, and 
c,, are about, equal. Thus for the V, + v,, = R lines closest 
to thr uriperturbr,d i/, , IjY, L/l and L’L, are shifted about 
eq~~ally and t>hrse b,,, rn do riot contribute much to the 
residual 1~1 - ~‘11. This lack of a domirlarlt, harmonic for 
the residual 1~1 - u2J makes thP correction of the residual 
1~1 - ~2 1 nlorc difficult. 

Eq. (3.7) has been checked” by comparing these 
results with numerical corripul.at,ions of vl, /j2. For the 
C&SC of V, = Ljy resonance line, p = 0, Eq. (3.3) may be 
solvt,d for v, I, v,, S and writt.en as I 

“1 = f (iZ+i$) f 
{ 

(~)2+4”-~y,~~(ul,ul),~}i 

lq = ; (i/Z+ 6,“) F L;z - “y” 
I ) 

2 

1 

f 
~ ‘2 + 4YrYylAY (“2, t.9) I2 

G=v,2+& ;; =L$+LLy (3.8) 

~1 is the mode that goes to V, when al -+ 0, and ~2 goes 
to vv. For the f sign, the + sign is used when u, > v,, 
for ~1 and the opposite sign for ~2. One can derive Eq. 
(3.7) from Eq. (3.8) when b(F,i7) = 0, V = f (v+ + +), 
and close to the resonance line V, = vY. 

4 V-SHIFTS WHEN v,, uy ARE FAR FROM 
THE v, - vy = p RESONANCE 
In the derivation of the previous results, v,, v,, were’ 
assumed to be close to the u, - v,, = p resonance line. 
When v,, vy are far from the resonance line the results 
are less int,eresting as thr v shifts are of higher order and 
smaller. However, it is interesting to see how the results 
for the v shifts in these two cases will fit toget,her 

Ilp to Eq. (2.6), the previous derivation will hold 
when vI,ur are far from the V, - vv = p resonance line. 
Let us first consider the ~1 mode where VI - V, when 
(L~ -+ 0. In this case, it is assumed that not only the A, 
are small compared t,o =1,, but also R, is small. 

To lowest ordrr, Eq. (2.7) become 

(v:,, - v,“) A, = 0, (I& - Y:) A,. = 0 

(JL - $9 6 = -2uyby (vy,r, v,,,) A, (4.1) 

vy,r = Jfr,, + fl 
Thus to lowest order, ~1 = vZ, and the tune shift is a 
higher order effect in al. To find the second order shift 
in ~1, the result for B, in Eq. (4.1) is put into Eq. (2.6) 
and the A, equation becomes 

(d,, - Y:) A, = &A, 

a, = 4VEU9 23 
IC” ;‘? 

n (71 - Yz)Z - VY” 
(4.2~~1 

1 

cr’ = 4TP 
-+ al (,~zi~y)Lp[i((n - u,)e, + v,e,)j 

This givcx the shift in v,, 

L+“;+&. j4.2b) 
‘I‘hc, xZ is similar to the AZ in Eq. (3.2) except that 

we now do not assume that vr - vY z p and the sum over 
n is over all n. This result, Eq. (4.2b), can be obtained 
from k:q. (3.3) if in Eq. (3.3) we assume that 

and not r$!&-~~~~A?y~ (h(VcqT Tir2,$‘A1 0 

In the same way o:e finds f& the u2 mode: 

v;=Y;+A~,A~ =4vIvyx 
lb, I2 

(n - Yy)2 - II,” 
(4.3) 

n 

bn= -& Jdsil,(il=~~):rxl,ji((rr-v,)O,+r/,O,)] 
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