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Abstract
This paper presents analytical perturbation theory results
for vy, ve, the tune in tune presence of linear coupling.

1 INTRODUCTION

The presence of skew quadrupole fields will linearly couple
the £ and y motions. The z and y motion can then be
written as the sum of two normal modes'? which have
the tunes vy and vy which are different from the tune,
Vg, by, in the absence of the skew quadrupole fields.

This paper presents analytical perturbation theory
results for vy, vy, The results for v, v4 are first found cor-
rect to lowest order in the skew quadrupole fields. The
results for 1,13 are then carried one step further to in-
clude the next higher order terms in the skew quadrupole
fields.

These analytical results show that for the higher
order shift in tune the important harmonics of the skew
quadrupole field are the harmonics near v; +v,. However
the harmonics closest to v, + v, do not contribute to the
higher order tune splitting, |v; ~ vy], as they shift vy and
vy about equally. This results in a lack of a dominant
harmonic for the higher order contribution of [v] — ],
which complicates the understanding and correction® of
the higher order contribution to |, — vy

Analytical results are found for the residual tune
sphitting which is the |y, — 14| that remains after the
driving term of the nearby differcnce resonance has been
corrected.

2 LOWEST ORDER SOLUTION FOR THE
MOTION

The equations of motion can be written as

(‘;IB_“% + U;TZ) ne = by () Thy

(@
do?

+ 1/;) ny = by (5) s

L L
r:ﬁr:nz» y:ﬂfﬂy

2.1
9: = /ds(l/l/rﬂr) = 1/):/1’: ( )
Gy = /ds('l/vyﬂy) = wy/vy
be (5) = v28, (B:8,)"% (a1 /p)
by (s) = 2By (B:84)"* (a1 /p) .

*Work performed under the auspices of the U.S. Department
of Energy.

The skew quadrupole field is described by a; (s). On
the median plane, the field B, is given by

By =~Bya;z,
where B is the main dipole field. p is the radius of
curvature in the main dipole.

To simplify the solutions of Eq. (2.1), we introduce
¢, and Cy such that

Ny =6z 4+ cc., 1)y:Cy+c.c. (2.2)

(; and C, also satisfy Eq. (2.1}, In addition, when
a; = 0, the solution for C:,(,y is
Co = Aexp (ivgf,;), Cy = Bexp (ivy,8y) (2.3)
We are looking for a solution of Eq. (2.1) which
is valid when vp, vy are close to the coupling resonance
vz — vy = p, p being some integer. The solution for ¢, Cy
will be assumed to have the form

Co= Agexp(ivy o02) + Y Arexp (ivs 0,)
r#és

¢, = B, exp (uy ,0;) +ZBr exp (ivy 0,) . (24)
r¥s

Vps~Vys=p .

The A, are assumed to be small compared to A,, and the
B, small compared to B,. Vrs, Uy, will give the v-values
of the normal modes. The normal mode v-values are vy,
vy and we assume v ~ p, and vy — vy when a; — 0,
then v, , — v, for the vy mode, and vy s ~ vy for the vy
mode, when a; — 0. The justification for choosing this
form for the solutions, and the choice of the vy and the
vy present will come out of the solution one finds using
this form.

The vy and vy, for r # s will be seen to have the
form

(2.5)

Ver = Vet N vy, = Vys+m

where n, m are integers. This could be assumed from
the beginning. An alternative procedure is not to restrict
vz and ¥y ., and to make the exp (ive +82) an orthogonal
set by choosing vy, = (27/T)q, q is some integer and
T is some very large angle, and treating v, , similarly.
Putting Eq. (2.4) into Eq. (2.1) and using the orthogonal
property, one finds

(uf’r - ug) A = -2, Z by (Vo r vy ) By



(v2, —v2) B = =y Y by (vyr.ver) Ar

T N
03z (B:8y)*

Vz',rgr + Vy,r'ey)] )

[ %
be (Ve vy o) =

(ar/p)exp [i (—

(2.6)
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v i
by (vy,r e ) = "E‘/ doy By (B:8y)*?
y( Yy ) 27 o ¥ y( y)
(“1/10) eXp [2 (“‘Vy,roy + V::,r'er)] .

In Eq. (2.6) we assume B, << B,, A, << A, for
r # s and find the first order results

(uf, - Vzw, Ay = =2upbe (Ve 5, vy.4) B,
(Vﬁs - L/Z‘l By = =2uyby (v 5, Vz,s) Ay (2.7)
(vi 2 VB A = =20pb; (Ve vy ) By
(for - uyz) B, = =2u,b, (vy,r, V) As

The first two equations in Eq. (2.7) are homogeneous
equations for A, and B,, and the v-values vy, vy, are
determined by requiring the matrix of the coefficients of
A,, B, to vanish. This gives

(VE,, - V;—z) (Vy2 s 7 V;) = 4Vfuy|AV (Vr.svuy‘s) I2
1

27
o / ds(ﬁ::ﬁy)i
Q

Av (Vr,sa Vy,.s) = i

(a1/p)exp [t (—vr 0z + Vy,sgy)]
Veps —Vys =P

(2.8)

Eq. (2.8) can be simplified by assuming that v, v, are
close to the resonance line vy, — vy s = p and v, = v,
and vy, =~ v,. Keeping terms of lowest order only, one
gets

(rs —vs) Wy s — 1) = [Av(vp s, vy s) ‘2

Ves —Vys =P

(2.9)

Eq. (2.9) has two solutions for vz ,, vy ,. We denote by
vy the value of v, , that goes to vy when a; — 0, and
vy the value of 1y, that goes to v, when a; — 0. The
solutions can be wnitten as

1
2

’ _ N 2
W=v,t {( i—-—-—-—ji—’—’) + 1Au(ﬁr,ﬁy)|2} ,
AN

(Ve — vy —p\° ;
uﬁvﬁ{(L;”—»—) +|Au(vr,?7y)|"’}
\

(2.10)

3
|

Ve={ve+uy+p) /2.0, = (v +v; -p) /2
For the &, the + sign is used when v, > vy + p for v and
the opposite sign for vy, In Av (v, ,,vy,), Vs, has been
replaced by ¥y, and v, , by Ty, which introduces a higher
order error that can be neglected.

From Eq. (2.10) one finds
2 3
”) + 1Ay (72, 7) V}

) Uy — Vy —
s

vy vy = v+ Uy

It

|V1 - V2 ~P|

(2.11)
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3 HIGHER ORDER SHIFTS IN v, & v,
To find a higher order result for ¥, and va, one has to find
higher order equations for A,, B, by putting the lower
order solution for A, B,,r # s, given by Eq. (2.7) into
Eq. (2.6).

Eq. (2.7) for A,, B, can be somewhat simplified
by assuming that v, v, are close to the resonance line
vz, = by, + pso that one can assume that vy , ~ v, and
vy, =~ vy and then

~2vzbs (VI,Y')Uy,J)
(n+ve+vy)(n—p)

—2uyby (vyr,ve,s)
(n+ve +vy)(n+p)

A,— - Ba» n # r

(3.1)

B, = Ag,n# —p
where v, = vy, +nand vy, = Ve, + 1.

Putting these results for 4,, B, m Eq.
finds the improved equations for A,, B,

(2.6) one

- Ar) As - “Qllrbr (V.r,svuy,a) Bs*,

2
: \ (3.2)
by Ay) By, = =2uyby (1y 5, vr5) A,

len [*
Ap = 4dvpv,
v"%(n—uwy)(n—p)
ba [*
A, = 4v;
_\y Vely n;p (n — v~y (71+17)
1
bn = 47r ds a1 (83, )3 exp E((n—wy)b: +1y0y)]

en = :1—71'_/3 / ds ay (Bxﬁy)% exp i ((n — vz) 0y + v.6:)]

Eq. (3.2) gives the equation for 1 , and 1y,

V2 = By) = Avevy| Ay (v, vy.0)
(3.3)

(vis —vi = 2) (W -
Vr s = Vys +P

Eq. (3.3) was obtained by using the result for A,
B, which is first order in a;. By iterating Eq. (2.6) one
can find a result for A,, B, to second order in a; which
will change Eq. (3.3) by replacing Av by

Av — Av + Av®) (3.4)
where Av(® is third order in a;. By going one step
further and iterating Eq. (2.6) to find results for A,, B,

to third order in a; will change Eq. (3.3) by replacing
Az, Ay by

Ar — A+ AW A, — Ay +AY

where A;(:‘), qu) are fourth order in a;.
write down all these higher order terms.
expression Eq. (3.3) keeping terms up to second order in
ay is probably suffictent here.

One should also note that in Eq. (3.3) vr,, and vy,
also occur implicitly in Av (v, ,,v, ) which complicates

(3.5)

One can
However, the
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the solution of Eq. (3.3) for v, , and vy,. Solutions can
be found depending on the size of Ar and the distance
from the resonance line v, = vy + p.

One interesting case is when a 2 family a; correction
system is used to make Av = 0, and when v,, v, are
very close to the resonance line v, — vy = p, so that
vy = vy and vy = v, with an error that is second order
in a;. Very close to the resonance line, so that in
Eq. (2.10) (v — vy ~p)? /4 can be neglected compared
to [Av|?, then the above can be achieved by making
Av (Y, ¥y} = 0 as shown in Eq. (2.10).

This corresponds roughly to the situation when a 2
family @, correction is used to cancel the driving term
of the nearby difference resonance, v — v, = p. In this
situation, one can find the shift in v, ; and v, , due to the
second order Az, A,. Then in Eq. (3.3) Av (vr,,vy,,) is
not zero but differs from zero by terms of order a3, and
thus |[Av}? is of order a§. For this result, the previous
observation, that higher order terms can only change the
Av term by Av3 a term of third order, is significant.
As |Av|* is of order af, one can treat it as being zero,
and Eq. (3.3) becomes

(U;:rzs ‘Vz )(53_Vy Ay)ZO, (3.6)
which gives the normal modes
1
V) = Vg -+ EAI, Vg = Vy -+ 2—'A (3 7)

Thus for the case when Ay = 0 and closeyto the resonance
line, there 1s a second order in a; shift in the r-values
given by A;/2v; and A,/21,. Eq. (3.2) for A, and
Ay show that the largest second order v-shifts will come
from harmonics in a, close to v, + vy. The driving terms
b, and ¢, for n closest to v, + vy contribute most to the
second order v-shifts.

One may also notice that b,,, ¢,,, as given by Eq. (3.2),
are just the usual stop-band results for the v, + v, =
n resonance but evaluated at particular points on the
resonance line. b, corresponds to the point n — vy, v, and
¢n to the pomt v, n — v, For the n-values corresponding
to resonance lines closest to the unperturbed v, vy, these
points on the resonance are not far apart and the b, and
cn are about equal. Thus for the v, + v, = n lines closest
to the unperturbed v, 1. 1y and vy are shifted about
equally and these b,,, ¢, do not contribute much to the
residual |v; — vy|. This lack of a dominant harmonic for
the residual |1y — 17| makes the correction of the residual
[11 — vo| more difficult.

Eq. (3.7) has been checked® by comparing these
results with numerical computations of vq,1. For the
case of v, = 1, resonance line, p = 0, Eq {3.3) may be
solved for vy, vy , and written as

2, -2 A 2 :
(o: +5y) £ ( ,, y) + dvzvy| B (vy, 1)

P — vl ! :
- (17$+D§);:{( z 5 y) +4u1-uyfAu(u2,V2)]2}

by = b+ Oy (3.8)
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o
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B

2
vr =vr + 85,

vy is the mode that goes to v, when a; — 0, and 1 goes
to vy. For the + sign, the + sign is used when v, > v,
for v; and the opposite sign for v,. One can derive Eq.
(3.7) from Eq. (3.8) when Av (T,%) = 0,7 = J (v, + ),
and close to the resonance line v, = vy,

4 v-SHIFTS WHEN v, v, ARE FAR FROM
THE v, — v, = p RESONANCE

In the derivation of the previous results, iy, vy were
assumed to be close to the v, — vy = p resonance line.
When u,,v, are far from the resonance line the results
are less interesting as the v-shifts are of higher order and
smaller. However, it is interesting to see how the results
for the v shifts in these two cases will fit together.

Up to Eq. (2.6), the previous derivation will hold
when v v, are far from the v, — vy = p resonance line.
Let us first consider the vy mode where v — v, when
a; — 0. In this case, it is assumed that not only the A,
are small compared to 4, but also B, is small.

To lowest order, Eq. (2.7) become

(Vz “V:?)A-""O ( 1.,.—1/2)/4,-«.0

)
(i, - uyg) By = =2uyby (vyr,ves) A, (4.1)

Vyr =Vrs+n.
Thus to lowest order, v; = v,, and the tune shift is a
higher order effect in a;. To find the second order shift
in vy, the result for B, in Eq. (4.1) is put into Eq. (2.6)
and the A, equation becomes

(’uﬁ,, — vﬁ) Ay = A A,

(4.2a)

ds a1 (Bzfy)¥ ex
This gives the shift in v,

. vi=vi4 A, (4.2b)

The A, is similar to the A, in Eq. (3.2) except that

we now do not assume that v, — vy = p and the sum over

n is over all n. This result, Eq. (4.2b), can be obtained
from Eq. (3.3) if in Eq. (3.3) we assume that

(V — I/ Ay} ((1/, - ;))2 — u:) ,
and not replace u, - vy by pih Eq. (3.2) for'A,.
In the same way one finds for the v, mode,

lbr |

{n— uy)z - v?
1
b, = m/ds a (ﬁ,ﬁy)é exp i ((n — vy) 0 + vy0,)] .
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plE((n—ve)ly +v:8:)] .

Cn =

vi= 1/5 + Ay, Ay = iy, Z (4.3)



