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Abstract 

The polyharmonical theory of ion beam 
accelerating field focusing useful for any 
drift tube system is proposed. The method de- 
veloped permits to distinguish an electric 
force time harmonics acting on the ions, and 
to analyse a motion stability; field space 
periodicity is not required there. The appro- 
xlmation degree can be choosen in each case 
bY taking into account a desired number of 
harmonics. High phase acceptance structure 
parametres are presented as the theory appli- 
cation. 

Introduction 

The radlo-frequency (RF) ion 1 inear 
accelerators are under lnterest now as the 
convenient instrument in many technological 
and scientific applications. The drift tube 
accelerating systems are most wide-spread for 
ion llnacs. In the energy range up to tens 
MeV, ron beam focusing may be effectively ac- 
compliched by means of accelerating field it- 
self without any suppiementary focusing ar- 
rangements, 

The electric field space harmonic dis- 
tlnguishing is the wellknown description me- 
thod for RF accelerating systems based on the 
autophasing principle[l] (simple harmonic mo- 
tion). But in the accerating field focused 
(AFF) systems, the focusing period consists 
generally of several accelerating gaps. The 
velocity ga:n on the focusing period may be 
essential and structure space periodicity be- 
comes not quite correct in this case. More- 
over, the periodical velocity component tro- 
ubles the AFF systems analysis becaus of tube 
and gap longltudlnal dlmentlons dlsaccordlng 
with Its transit tlmes even at the acceie- 
ration absence; the tube and gap dimentions 
ceases to be the clear characteristics of 
field action on the particles. 

Polyharmonical Analysis Method 

The direct analysis of electric for- 
ces may be simplified if the gap and tube 
transit times of so-called syncronous par- 
ticle At%, At, are accepted as an initial 
data instead of longitudinal dimentions 12, 
31, When a focusing period structure is de- 
termined In phase terms, the inverse conver- 
sion to length terms presents no hardness. 

The independently phased accelerating 
gaps sequence will be considered below. Sup- 
pose, that the electric field is changed ln 

accelerating gap as 

where i is the gap number; 0 is the main an- 
gular frequency; E,i, ‘t&i are the electric 
oscillation amplitude and initial phase. 

Consider, that the electric field acts 
on the synchronous particle periodically and 
the focusing period consists of N gaps. If 
the longitudinal electric field component dl- 
stribution is approximated by “step function” 
( Ei in i-th gap and zero in any tube), then 
the electric field, which acts on the syn- 
chronous particle E, may be presented as fol- 
lows: 
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where U,; Is the gap centre phase coordinate; 
P is normalized phase extent of focusing pe- 
riod. The gap and tube phase extents are de- 
termined by Its transit times: Aqg,~ -G)At#,r. 
As we can see, at nz0 the synchronous partl- 
cle Is influenced by the constant field which 
may be thought as the field associated with 
the synchronous space harmonic ; that’s why 
we can accept E,-Es , OO=lps Integrating 
the non-relativistic equation of syncronous 
particle motion at small velocity increment 
supposition produces 

z,‘-v$t -& :;? ~2($4+4~ ? 

where 9, m,, V,, Zs are charge, mass, avera- 



ge velocity and 1 ongl tudinal coordinate of 
synchronous particle. Particle forced oscll- 
iatlon amplittude will be concerned small, 

The longitudinal and transverse e 1 ec - 
tric field components E,, Ep may be defined 
near the accelerator axis in terms of E,(t) 
and Z,(t) : 
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The transverse and longltudlnal motion 
equations of any general particle are: 

m,d~=[E,(z,+az,t)-E,(zs,t)l, (2) 

where hz 1s the particle longitudinal dls- 
placement from the synchronous one: r 1s the 
transverse Coordinate. 

When conslderlng AZ as an independent 
slow changed parameter, then eq. 12, 3) may be 
transformed for small AZ, P as follows: 
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where 
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Am(l(ptm)sin8,+A-,(Kp-m)sin8-m , 

“m=A,(Kp+m)cO~,-A-,(kp-n3cos8_, ’ 

A eb X = +rn moC2 
> m=l, 2,... 

i+:(3Ai!./V, Is PartlCle small phase devlatlon 
there; q:c)t Is current phase; ps,ls normall- 
zed average synchronous velocity; c 1s llhgt 
velocity. Each value m in eq. (4, 5) corres- 
ponds with two harmonics, the numbers of 
which are rn and -m. 

To slmpllfy the analysls procedure, 
consider the monofrequency systems, k pi. 
Suppose, that the fundamental contrlbutlon to 
beam f Ocus ing 1s made by two harmonics of 
electric forces under m, -m numbers which 
influence upon the syncronous particle with 
the same period that the system maln focu- 
sing period p, TaKlng Into account Only these 
two harmonics, we can transform eq. (4,5) to 
the Matleau’ s equations : 

d2+ ($‘& sinU) 9 = 0 , 
du2 

where 
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Matieau’s 
equation may be appropxlmated as-c 248<#-[/2 
Wkl;qa;;;;‘“” both transverse stability of 

ion bunches and longitudinal 
one, this condition must be satlsfied for 
eq. (6, 7) simultaneously. The “focusing coef- 
ficient” & defines the accelerating channel 
acceptance and beam current capability. A 
correlatron between the transverse acceptance 
and longltudlnal one Is associated with the 
coefficient 8 . Perlodlcal particle velocity 
component leads to so-called “static” focu- 
sing effect on the analogy of axlal symmetric 
electrostatic linzes, where the focusing ef- 
fect is caused partly by particle velocity 
oscll latlon. As the practical calculations 
confirms, the "Static focusing coefflclent” 



1746 

1s usually small and It may be neglected 
in focusing period structure preliminary cho- 
ice. Thus 

8 = p2 A S\nqs, S,=-4-~l&.n(~s+~). v 2rq3, s 

Theory Practical Application 

The method developed permits to ana- 
lyse any focusing period structures in the 
various drift tube accelerating systems. Con- 
sider some of this systems, used in practice, 

I. Single multigap resonator. Fourier coef- 
ficients (11 may be presented in followlng 
form: 

where 

u;= y&g l.!~+tp,;)+~(i-,) . 
ki is J-th tube multiple coefficient there; 
cp* 1s the electric field oscillation phase 
(ig cos coordinate ) at which syncronous par- 
ticle cross the gap electric Center. cr(l-1) 
occurs for s-mode resonators only in last 
expression but it 1s absent for 2g-mode (Al- 
varetzi resonators. 

2. The independently phased monogap resona- 
tor sequence. Keeping the form (81, we have 

UiZPF [Aq$ (aYp%J)+ 2 AY+lJ; , (9) 
where vi is the oscillation lnltlal phase in 
i-th gap, or 

where CpE; is the gap center crossing phase 
determined above. 

3. The independently phased two-gap resona- 
tor sequence useful for heavy ions may be de- 
scribed also by formulas (B-i0). 

In focusing period structure prelimi- 
nary choosing and in accelerator channel pa- 
rameters estimating, it is advisable to limit 
the harmonics number by value of three: one 
synchronous (or accelerating) harmonic and 
two non-synchronous (focusing) ones. The Ma- 
tieau’s equations (6,71 may be considered in 
this case. 

varieties, characterized In general by one 
focusing harmonic (m:i or ml-i), But if the 
influence of both focusing harmonics is more 
or less equivalent, then the focusing variety 
is most interesting. Thus, so-called “hybrid” 
focusing which combines the center gap phase 
alternating [5,61 with the gap transit time 
periodical changing (at large gap phase ex- 
tent, more then% ) 171 1s proposed. Using 
this focusing variety, the following proton 
accelerator parameters are received by means 
of theory application and computer beam dyna- 
mics simulation [81, The longitudinal accep- 
tance phase extent is as large as 250p at 8% 
initial energy spread, injection voltage is 
less then 30kV. The normalized transverse ac- 
ceptancew50mradxmm 1s usual for alternating 
phase focusing. The accelerator length equals 
1, 2m; the final energy 1,3MeV is gained at 
the electric field strength in gap Centers 
about (3-51MV/m. 

Conclusion 

The polyharmonlcai method developed 
may be useful for all drift tube systems with 
any gap number per focusing period. We can 
choose the approxlmatlon degree in each case 
by taking into account a desired number of 
harmonics. Beam dynamics simulation is cer- 
tainly required in accelerator designing but 
the theory permits to make the preliminary 
evaluations and simplify sufficiently the ef- 
fective focusing period structure Choice. 
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