1699

A 3D PARTICLE SIMULATION CODE FOR HEAVY ION FUSION ACCELERATOR STUDIES*

Alex Friedman, Roger O. Bangerter, Debra A. Callahan, David P. Grote, and A. Bruce Langdon
Lawrence Livermore National Laboratory

P.0O. Box 808, Livermore California 94550, USA
Irving Haber

U.S. Naval Research Laboratory

Washington DC 20375, USA

Abstract

We describe WARP, a new particle-in-cell code being de-
veloped and optimized for ion beam studies in true geometry.
We seek to model transport around bends, axial compression
with strong focusing, multiple beamlet interaction, and other in-
herently 3d processes that affect emittance growth. Constraints
imposed by memory and running time are severe. Thus, we em-
ploy only two 3d field arrays (p and ¢), and difference ¢ directly
on each particle to get E, rather than interpolating E from three
meshes; use of a single 3d array is feasible. A new method for
PIC simulation of bent beams follows the beam particles in a
family of rotated laboratory frames, thus “straightening” the
bends. We are also incorporating an envelope calculation, an
{r.z) model, and a 1d {(axial) model within WARP. The BASIS
development and run-time system is used, providing a power-
ful interactive environment in which the user has access to all
variables in the code database.

Introduction

In this paper we briefly describe the elements of the WARP
code, concentrating on the 3d particle-in-cell model WARP6; the
name derives from the 6d phase space, and from our goal of mod-
eling a bent (“warped”) beam. A more detailed description [1]
is available. Recent code developments, in particular the ability
to load matched beams with tapered ends, are described here.
Our initial runs have included tests of infinite (periodic) beams
in an alternazing-gradient lattice; in preliminary tests, we have
noted a rapic conversion of transverse thermal energy into lon-
gitudinal thermal energy, when the beam is initially colder in
= than in r and y. We have also made runs which model the
drift-compression of a tapered-end beam in the presence of mis-
aligned quadrupole focusing elements. A run of each type is
briedy presented.

Overall Code Architecture

The code is written in FORTRAN using facilities of the
BASIS system [2]. The latter provides a run-time shell which
affords a flexible interpreter-driven interface. The user can
view, perform transformations on, and/or plot any quantity
in the code. Graphics, [/O, etc. are handled by BASIS, and
any FORTRAN subroutine can be called from the interpreter
directly. BASIS also provides a development system which
facilitates truly modular “physics packages” and enables us to
whink of WARP as either a “code” or a “family of codes.”

Extensive phase space plot, contour plot, and particle
moment diagnostics are available, Many of these are based on
a system of user-specified “windows,” which are ranges in =z,
x, y, and r. Time-history data is collected and plotted at the
end of the run. Graphical output is written to a metafile, and
{optiorally) o the user’s terminal. A frame index is generated
as an aid to selecting plots for viewing or printing.

3d Package WARP6

The simulation takes place in the laboratory frame; the
mesh is a moving “window.” The particle advance is (optionally)
relativistic; for each particle we store spatial coordinates z, y,
z, normalized momenta yv,, yvy, yv,, and (for efficiency) vt
The self-field is assumed electrostatic in the beam frame; at
present we use this field directly. For faster beams we will
obtain the lab-frame self-E and B via a Lorentz transformation.
Electric and magnetic forces are applied using a conventional
algorithm [3, Chapter 15]. The code gains efficiency via a
number of means; these are described in the subsections below.

Residence Corrections

In leapfrog motion, if a particle were to land within a
sharp-edged element on four steps while its neighbor did so on
only three, they would receive very different impulses. Thus,
the advance is modified to incorporate “residerce corrections”
(averages over a step) for element forces; these are multiplicative
factors equal to the fraction of the velocity advance step actually
spent within the element. We estimate z at the beginning
and end of the velocity advance step by assuming v, remains
constant. The element force is averaged over a half-step ar
startup. The procedure allows much bigger steps than otherwise
would be possible.

Because the residence correction is (weakly) z-velocity
dependent, the symplectic nature of the leapfrog advance s
broken. For the systems in which we are interested, we believe
that any negative consequences of this are outweighed by the
vastly improved accuracy. A similar force-averaging over a step
should also be applicable to problems involving fringe fields, etc.

Isochronous Advance

Timestep number n is conceptually defined as the advance
of all quantities from time level n — 1 to time level n. The
simplest way to effect this is by means of an ‘“isochronous
leapfrog” particle advance [4]. In this scheme, the usual leapfrog
velocity advance step is split so that both x and v move from
one integer time level to the next at each step. The numerical
properties are identical to that of leapfrog. The scheme simplifies
particle loading and diagnostics, and allows us to change At
while preserving second-order accuracy. However, for specd we
use the isochronous advance only on “special” steps on which
diagnostics (etc.) are done, and revert to (almost) pure leaplr ¢
for all others. Thus we need make only a single pass through
the particles on most steps.

At the end of “special” steps, a second pass is made
through the particle list; in this pass, v is advanced to the
current integer time level 71, so that phase-space plots, restart
dumps, etc. will use synchronized x and v. At startup. and
at the beginning of any step following a special step, v is onlv
advanced a half-step. The code must give the same answers
whether or not one stops to synchronize. Thus, to advance v
to level n we use a full advance to n+iy2, followed by an easily
invertible half-advance back. The “residence correction™ for the
latter uses the mean beam v, .

Fieldsolver

The 3d fieldsolver is performed “m-place” using fast
Fourier transforms (FFT’s). It performs sine transforms (for
metal wall boundary conditions) in r and y, and real periodic
transforms in z (so far) [3. Appendix A]. Along all axes vec-
torization takes place over the “second” dimension, leaving the
“third” for possible multi-tasking. The solver uses essentially no
scratch space. At present the grid dimensions Ny, Ny, and N,
are constrained to be powers of two. A typical current applica-
tion uses a 64 x 64 x 256 mesh (just over a million zones). Such
a syster is solved in about two seconds on a Cray X/MP.

Local Differencing of ¢

No arrays for E are used; instead, ¢ 1s gathered from cells
in the neighborhood of each particle, and then differenced on
a partidciy—pnrti(‘lc basis. This saves the space of three 3d
arrays, and for the trilinear interpolation applied to E is quite
efficient. In 3d, one needs to pick up 32 ¢'s instead of 24 E's.
It is a simple task to collect the &’s, since one is collecting like

1700

objects using an index list. The procedure takes advantage of
the hardware vector gather capability of our Cray X/MP. In the
future, we may consider use of a single 3d array (for p and ¢);
for efficiency and flexibility we have been using two. It would
be necessary to make two passes through the particles (even on
a leapfrog step); one can’t deposit p into the array currently
holding E.

Other Aspects of WARPG

The particle advance is vectorized. Deposition of p is
vectorized with length 8, over cells touched by each particle. Asa
future refinement, we plan to deposit p from eight well-separated
particles at once, to get vector lengths of 64. This requires a
partial sorting of particles; those depositing simultaneously must
not access the same cells. The scheme generalizes those of [5].

“Quiet-start” particle loading [3, and ref. therein] is em-
ploved to reduce fluctuations and minimize the number of
particles needed. One option generates a transverse “semi-
Gaussian” distribution which has a nearly uniform spatial den-
sity within the envelope and pseudo-random cut-off Gaussian
distributions of z and z, y velocities. Another option generates a
“Kapchinskij-Vladimirskij” (K-V) distribution [6] in transverse
phase space. WARP's envelope solver is run before particles are
loaded, so that the necessary parameters at each z are available.

We have recently added tapered ends to our beams, with
a parabolic dependence of line-charge density upon z [7]. For
convenience, we assume that €; and e, vary as a’ (and thus
as I). This leads to cigar-shaped beams with tune deprebbxou
independent of z, so that a single envelope solution (suitably
scaled) describes the whole beam. We are currently introducing
an axial confining force into our 3d and (r, z) simulations, in an
effort to simulate “quiescent” finite beams. For “cigar” beams,
a linearly ramped electric field does not cancel the self-field very
well, and waves are launched. We thus plan to take into account
the increase in the “g-factor” toward the ends of the beam, which
leads to a faster-than-linear ramp-up.

Other Models

A “cylindrical” (r,) model, such as the one now in WARP,
captures the interaction between axial and some transverse mo-
tions. The model is significantly faster than the 3d one, since it
takes fewer pdrticles to represent a 5d phase space; furthermore,
the assumption of “continuous focusing” (also useful in 3d) elim-
inates the cost of tracking through quadrupoles. A much finer
mesh is also possible. This package will be used for longitudinal
stability studies.

We are incorporating a longitudinal 1d model. It will
not employ the usual long-wavelength 9A/0z force law, but will
mstead assume incompressibility to infer the beam radius r(z)
from A(z), use the existing (r,z) field solver to obtain E,(r,z)
then average over the beam cross-section to obtain E, (z) The
model will thus be directly comparable with more completo (r,z)
simulations, as well as with other longitudinal codes.

Technique for Modeling a Bent Particle Beam

Here, we outline the method we are developing; a some-
what more detailed description appears in [8], along with an
outline of a related algorithm for a 2d (transverse) model of a
bent beam. We define the coordinate s to be the usual axial
coordinate z in a straight section, but a distance along the “cen-
terline” # = 0 in a bend (we assume that v = 0 is nominally
a symmetry plane). We also define r, to be the local radius of
curvature of the centerline; thus s is an angle 3 scaled by r,.
In the bends, z is a radial coordinate: z = r — r,. The axial
velocity is v, = r¢ = —rf. Note that ds/dt = r,3 # v,.

Particles are advanced as is usually done in a straight-
geometry code; then a transformation is made into a rotated
inertial Cartesian coordinate system (different for each particle)
in which the = coordinate is aligned along the line between the
vessel’s nominal center of curvature and the particle position.
The frame of reference is never accelerating, so no pseudo forces
(centrifugal or Coriolis) need be applied, and the properties of
the underlying advance are retained. The algorithmic steps are:

(1) Enter with x4, 20 = 8¢, Tgo = vyg, 20 = Ugg. 8¢ 15 the
accumulated Zytraights + Te¥bends. Advance these to oy, 21,
Iy, 21 v1a leapfrog. In a straight, stop: s; = 2y, vy = &,

v, = z1. In a bend, continue.
DR (EFALET e
+
N -
(3) cosy = _,‘_

Obtain the new position: ry = ry — 7, 8y = sy + 1.0

2

}
(5) Rotate v tlll()[‘&,ll the same angle: vy, = cospr) + sinvrz,
v, = —sinyry + cos vy, This (()mplv’(m the step.

Special care is needed to preserve the exactness of the
transformations. Residence corrections are needed when a step
overlaps the entrance to or exit from a bend.

“Equilibration” Process

This run examines the exchange of thermal energy between
transverse and longitudinal motions in an infinite periodic beam.
In contrast with some earlier work [9], our beam was initially
cold in z. In the run shown, the phase dd\dl ce per cell, oy = 60°,
was depressed by space C}ullgf’ to o = 20°. The Hllllllldthm used
a 64 x 64 x 128 mesh, with walls at iu cm. 108320 particles were
loaded into a quiet-start K-V distribution with initial semi-axes
1.88 and 3.05 cm. The lattice period and mesh length were
1.2 m, and At corresponded to 2 cin/step. The problem was
run for 9000 steps (180 m, or 150 periods). Tt used 2.64 Mwords
of memory and took somewhat less than 6 X/MP hours.

In this run, the z thermal energy rises rapidly at first while

the transverse energy falls. When vy, , has risen to about half

Uth ¢, slow heating takes over in both 2 and zr,y. The transverse

ermittance falls during the rapid heating phase, then grows very

slowly. The total energy (less that of the nominal beam speed) is

conserved to one part in 150, The various energy “components”
are shown as functions of time in Figure 1.

T hinelic Tries Perp k:iuelie Everon

;M‘H,” |\J

it

H‘HE :

Live

= Lime

Figure 1. Energies versus time for mfnm-]wuwi](run:
{(a) lonsxtudmal kinetic (omits nominal); (b} transverse

Linetic (includes AG encrgy); (¢) field; (d) total.

We emphasize the preliminary nature of these results
nonetheless, factor-of-two variations in cell size, particle number,
and timestep size did not qualitatively alter the behavior, which
also occurs under continuous focusing. We have not observed
a correspondingly rapid exchange when the beamn was initially
warmer in z than in z,y. We conjecture that the initial rapid
heating in z may be the result of an anisotropy- driven instability
reminiscent of a Harris mode [10], but with betatron motion
instead of cyclotron motion. The final state, with vy, ~
2ugp ., may arise from numerical heating primarily of transverse
motions, with collisional transfer into longitudinal motions.

X vs £
.
00 (a)
0.
-.09
— [el Rl
Y vs 7
.ﬂ‘}{
C.
- 05
= = -,
X vs 7
05 {b)
0.
-. 00
= = =
Y vs [
Oﬂ
0.
—,U’J’
= = =

Figure 2. Drift compression run: (a) initial; (b} at step 600.

Line Charge

. ///'\\\\ _
gl '
N
A
5l
1g-® i
(e

Figure 3. Drift compression run: line charge density versus
> at ten times during run.

1701

Drift Compression through Misaligned Quadrupoles

In the final stages of beam transport it is useful to concen-
trate the current by introducing a “velocity tilt.” We have sim-
ulated a beam wherein the initial (veail = Uhead)/ Veenter = T.5%.
The run used 54160 particles in a K-V distribution, and a
64 x 64 x 128 mesh 2 m long with walls at £7 cm. Agaimn,
ap = 60°, o = 20°, and the lattice period was 1.2 m. Magnetic
quadrupoles were misaligned in r and y with RMS deviations
0.5 mm. The beam was run for 900 steps, taking 37 minutes of
X/MP time. The particle mover used 7.2 ies/particle/step, the
field solver ~1 s/step.

Figure 2 shows “top” and “side” views of the beam at
t = 0, and after 600 steps. The effect of the drift compression
is evident. As a chance result of the particular pseudo-random
numbers used, the beam suffered worse cumulative deflections
in y than in z. In Figure 3 the line charge density at a number
of times during the run is shown overlaid (only a small numnber
of points in z were plotted). Total energy was conserved to one
part in 500. The variation in total energy was about 1% of the
fall in kinetic energy over the course of the run. The beam-
center emittance remained approximately constant in a similar
run without misalignments; in a run with 1 mm RMS errors, it
grew by ~25%, as a result of the beam’s closer approach to the
square pipe walls. This growth disappears when the walls are
moved out to 9 cm.

Acknowledgments

The authors have benefited from discussions with S. Bran-
don, P. Dubais, G. Joyce, J. Krall, J. Mark, and D. Nielsen.

*This work was performed under the auspices of the U.S. D.O.E.
by Lawrence Livermore National Laboratory under contract W-
7405-ENG-48, and by the Naval Research Laboratory under
Lawrence Berkeley Laboratory contract DE-ACO03-765F0098.

1. A. Friedman, D. A. Callahan, D. P. Grote, A. B. Langdon.
and 1. Haber, “WARP: A 3D (+) PIC Code for HIF Simula-
tions,” to appear in Proc. of the Conf. on Computer Codes
and the Linear Accelerator Community, Los Alamos NM,
January 21-25, 1990, R. K. Cooper and K. C. D. Chan, eds.
{to be published); LLNL Report UCRL-102907 {1990).

2. P. F. Dubois, et.al., “The Basis System,” Lawrence Liver-
more National Laboratory Document M-225 (1988).

3. C. K. Birdsall and A. B. Langdon, “Plasma Physics via
Computer Simulation,” McGraw-Hill, New York, 1985.

4. A. Friedman and S. P. Auerbach, “Numerically Induced
Stochasticity:” S. P. Auerbach and A. Friedman, “Long-time
Behavior of Numerically Computed Orbits: Small and Inter-
mediate Timestep Analysis,” to appear in J. Comput. Phys.

5. A. Héron and J. C. Adam, “Particle Code Optimization
on Vector Computers,” J. Comput. Phys. 85, 284 (1989);
E. Horowitz, “Vectorizing the Interpolation Routines of
Particle-in-Cell Codes,” J. Comput. Phys. 68, 56 (1987).

6. 1. M. Kapchinskij and V. V. Vladimirskij, Proc. 2nd Intl.
Conf. on High Energy Accelerators, p. 274, CERN (1939).

7. D. Neuffer, “Longitudinal Motion in High Current lon
Beams-A Self-consistent Phase Space Distribution with an
Envelope Equation,” IEEE Trans. Nuclear Science NS-26,
3031 (1979).

8. A. Friedman, “Methods for PIC Simulation of Bent Particle
Beams in 3d and 2d”, Proc. 13** Conf. on Numerical Simu-
lation of Plasma, R. J. Mason, ed., paper PMB-10, Santa Fe,
1989 (unpublished).

9. I. Hofmann and I. Boszik, “Computer Simulation of
Longitudinal-Transverse Space-Charge Effects in Bunched
Beams,” Proc. 1981 Linear Acclerator Conf., Los Alamos Na-
tional Laboratory Report LA-9234-C, 116 (1982).

10. E. G. Harris, “Unstable Plasma Osallations in a Magnetic
Field,” Phys. Rev. Let. 2, 34 (1959).

