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TRANSITlON CROSSING WITH THE SPACE CHARGE - THE JOHNSEN AND UMSTATTER EFFECTS 
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A longitudinal phase-space simulation (ESME) of the 

transition crossing is carried out (including various collective and 

single particle effects contributing to the longitudinal emittance 

blow up). The simulation takes into account the lcmpitudinal space- 

charge force (bunch length oscillation), the transverse spacecharge 

(the Urnstatter effect) and finally the dispersion of the momentum 

compaction factor (the Johnsen effect). As a result of this simula~. 

tion one can separate relative strengths of the above mechanisms 

and study their individual effects on the longitudinal phase-space 

evolution. especially filamentation of the bunch and formation of a 
“galaxy-like’+ pattern. Finally, a simple scheme of the yt-jump is 

implemented as a cure 

Jntroductioo 

The colliding mode operation of the present generation of 

high energy synchrotrons and the accompanying r.f. manipulations, 

make considerations of individual bunch area of paramount impor- 

tance. Thus. a longitudinal emittance blow up in one of a chain of 
accelerators, ti,hile not leading to any immediate reduction in the 

intensity of the beam in that accelerator, may cause such a reduc- 

tion of beam quality that later operations are inhibited (resulting in 
a degradation in performance). 

In this paper we employ a longitudinal phase-space track- 

ing code (ESME)t as an effective tool to simulate transition cross- 

ing in a circular accelerator. One of the obvious advantages of the 

~;imulatior compared to existing analyric fonalisms, e.g. based on 

the Vlasov equation2, is that it allows consideration of the collec- 

tive effects in a self-consistent manner with respect to the changing 

nrcelrrattng conditions. Futlhermore this scheme allows to model 

ncnllincaritic’s of the longitudinal beam dynamics. which are USII- 

ally not tTXCt;de iin:+lytiCail~. 

Included in the simulation is the investigation of the *{t- 

jump as a possible cure aimed at eliminating or limiting emittane 

growth across transition, The machine-dependent parameters, 

which are considered here, are derived from the proposed 

Fermilnh’s hlain Injector. 

Briefly summarized, the tracking procedure used in ESME 

consists of turn-by-turn iteration of a pair of Hamilton-like differ- 
ence equations describing synchrotron oscillation in B-E phase- 

space (0 I- 0 < 2~ for the whole ring and E = E - E,, where E, is 

the synchronous particle energy). Knowing the particle distribution 
in the azimuthal direction, p(B), and the revolution frequency, Q, 

after each turn, one can construct the longitudinal wake field in- 

duced by the coherent space charge forces 

where 

00 

Vi(B) = ew, &Yrn Z&.(ncO,!eine, 
n=--c-3 

Z.. (nw SC 0 )=% !I +71nb 
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(1) 

IIrre, a and h are the radii of the beam and the smooth v~uum 

pipe, respectively. 
,A.i :f rt?Slllf of the triirifVr:rW \p:i~‘(‘ Ctliirgr force\; e;IL’tl I’;11 

title suffers a horizontal betatron tune shift, which is proportional 
to the particle density, p(O), at the given longitudinal position 0. 

This tune shift translates directly into the change of yt. Close to the 

transition, when r~ goes through zero, e.ven very small corrections 

to ‘it play dominant role and they govern the longitudinal beam dy- 

namics One of the features of ESME code is that each particle has 
its own ‘(I, which allows us for straightforward implementation of 

the Urnstatter effect (described above). Similarly, to account for 

the dispersion of the momentum compaction factor (Johnsen rf- 

fwt), different parts of the bunch (particles with different momen- 

tum offset) are allowed to cross transition at different times. Roth 
contributions to the yt shift are summarized belo& 

2hr, R -L-.- p(e) - al $ -. 2j(t) 1 
p2yaz y’ 

The last term in the above equation represents some exter- 
nal y,-jump accomplished by firing a pulsed quadrupole magnet. 

One purposely taylors j(t), so that the transition crossing happens 

much faster and no significant emittance blowup has time to de- 
velop. For the purpose of this simulation the last yt manipulation is 

implemented according to the following q-program 

* Opm~~l hq fhc IlnivcrGtles Research Awcialm undrrccmtracl with 

lhr iJ S r’kp;trttrie~.~ of~nrr~~ 
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As a starting point for our simulation a single bucket in B-C 

phase-space is populated with 500 macro-particles according to a 

hi-Gaussian distribution matched to the bucket so that 95% of the 

beam is confined within the contour of the longitudinal emittance 
of 0.4 eV-sec. Each macro-particle is assigned an effective charge 

to simulate a bunch intensity of 6x lOlo protons. 

The dispersion of the momentum compaction factor, al, is 

assigned a value of 5x 10--s and all three features described by Eqs. 

(1) and (2) are used in the simulation The simulation is carried out 

over a symmetric (with respect to the transition) time interval of 

2700 turns. The following sequence of the longitudinal phace space 

snap-shots taken every 400 turns illustrates dilutions effects due to 

extensive filamentation of the beam at transition. 
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here we will present in parallel fashion results of the transi- 
tion crossing \ki:hout and with the y,-jump I~~t~led by a) and h) re- 

spectively. To visualize the position and shclpe of individual 

bunches as they evolve in time one can compose a “mountain 
range” diagram by plotting R-projections of the hunch density in 

equal increments of revolution number and then stacking the pro- 

jections to imitatt* the time flow. The resulting mountain range plot 

for both cases are given below. 
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