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Abstract: For accclcrator vacuum chambers especially in 
cooling rings the rf characteristic is of high importance. Within 
a certain rf frequency range for example a certain wave attenu- 
at,ion is required to decouple cooling antennas and kickers from 
each other. A general purpose 2d-wave analysis program is prc- 
s~nt,rul which can calculate wave propagation characteristics in 
arbitrary shaped chambers. The inside of the chamber may have 
an arbitrary distribution of permittivc and/or permeable mate- 
rial. Losses are treated by solving Maxwell’s equations with truly 
comples field vcY+ors. 

I. Intxocluct~ioxI 

The presented new CAD program calculates the rf character- 
istics of waveguides. ‘Thereby the only constraint on the wave- 
guide is that it has to by homogeneous in thr direction of pro 
pagatioll. It Inay have an arbitrarily shaped cross section and 

IIlaJ. bc filled with arbitrary, lossy, linear materials. Thu!: this 
program is a very useful too! for designing vacuum chambrrs, ~OI 

instance with all kinds of coatings, or for developing new possi- 
bilitic,:: for i’articlo iiccel<*:ation, The program rcprclsc%nts a two 

dinlrlnsional wavy analysis computer code and solvt~ Maxwell s 
equation by l.lic Finite Iritcgl,ation Algorithm anti is p;lrt of tllcs 
M 4V1A gre,up or codes [l] 

II. Field Calculat,iorls 

111 order to evaluate the E-field and the g-field inside a given 

structure, the integral formof Maxwell’s equations are discretized 

jcdB/AEd/i= $2-C& 

From now on z is chosen as direction of propagation. The 
next step is to change the 3d problem into a 2d problem by 
using some additional information. For an arbitrary waveguIde 
which is homogeneous in z direction the dependence of ?he elec- 
tromagnetic fipid components on this direction of propagation is 
known 

E = @z,y) . ,-jk.z (3) 

. 
where E(rp, 21) represents the transverse field and k, is the maw 
numbrr. Discretixstion of equation (3) yields: 

E = s(s,yj p-jk,*z N g(z,y). (1 -j&AZ) (4) 

for small AZ. Relation (4) holds exactly, if AZ goes to zero. 
Using the fact that inside the waveguide 

+ 
dzr:D = 0 (51 

is true, thr rS, componrnt can bo <~limiriatrtl and wo obtain the 
lwo dimensional form of (]I<~ wave equation 

I.lLl.li.(li./I: ,lT E - i;“l? z Lr ( ci ) 
. . . 

ill mat.rix for111. II?!-? I’.‘,,. r-‘pr”“‘“l s 1 II? lrXlsVc:rsc~ I~~~o:,,I”“,~nt,s 
I?,, is also an eigenvector of the matrix which describes the curl- 
curl operator and -kp is the rigenvalue. This rigenvalue proL- 
lem is solved by an iteration algorithm. In general the matrix 
is complex and so are its eigcnvectors and eigenvalues. In order 
to handle this truly complex problem a I,anczos algorithm was 
c-hoser1. 

III. ‘The, Lmw,os Algorithm 

L~l.rlczos - Iilrtllocjs for l.llcs (+g(9~iilllf: c~oxrlI?llt,at,iolls. 

‘171e eigeriva~ic~ ~OIII~~U~;L~IUII ior I~~ss-F~xv w;rvrguiJrs is listr;~ll!’ 
done by a polynomial itmittion :nc%hod. l“or lossy materials, It;< 
cigcnvalue spectrum bccomc,s complex, and the task of finding a 
suitable polynomial is far beyond reach, so that polynomial it,rr- 
ation is very ineffIcient. Now it has long been realized that single 
vector Lanczos procedures are at least as efficient as polynomial 
iteration with an optimal polynomial for exact arithmetic, but 
react in a somewhat chaotic way to round off errors, so that they 
have only rarely been used. Recent results showed how these 
problems can be avoided [rj] [I] or isolated [2] [3] with mode- 
rate losses in efficiency. The algorithm used here is an adaption 
from [3] to the special situation of complex harmonic Maxwell’s 
equations. 

The basic procedure in [3] is the following: Let A be a matrix 
and 1.1~ a vector ( usually randomly chosen ). Set 1~~ = v~, 
~0 = ZU~ E O,& = 0 and compute the sequences v;: WC, (~,,,3; 
defined by 

B t+1%+1 = Avi - a,~, - ,!j’,~,-~ = r,+, (7) 
B w,+1 = A 2 ItI w, - CY,W, - p&o-1 Ez t,,, (81 

20, = t$(Rv, - B,u,-l) + 2J~(AuJ, - ii,7LJ-l) (9) 
a,:, = (‘.?;lf,+l) (10) 

With I/,,, = (2’, , ,v,), MI,, = (to:‘, ,vL), the matrix 

y::, = 11; 1;: ;,; ~~ j =r/l’,,nbL (11) 
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is the the m-dimensional Lanczos matrix to A and ~1. In exact 
arithmetic, the vectors vi, . . , v,,, and wi, . . : 20~ are biorthogo- 
nal. With incresing m,the eigenvalues of ‘T, will converge against 
the eigenvalues of .4 If z is an eigenvector of 2’; to a con- 
verged eigenvalue, then y = 2 ’ r is an approximations to the V,,, 
eigenvector of .4 to the same eigenvalue. The quality of the ap- 
proximation can be estimated reliably from the size of the last 
component of the T cigenvector. 

The algorithm requires memory for storing A and 6 vectors, 
and the L’, have to be stored on disk. The storage requirements 
still may be more severe than the cpu requirements. 

In finite precision arithmetic, the biorthogonality of the vec- 
tors is lost, so the matrices Ti, have ‘spurious’ eigenvalues that 
have no correspondence to eigenvalues of A , and ‘numerically 
multiple’ eigcnvalues that are multiple copies of eigenvalues of 
A. In [Z] and [3] ways of recognising spurious eigenvalues of T,t, 
and of treating multiple eigenvalues of T are proposed. 

The Implementatiou 

Testing for co7~vergencs: For certain m convergence is tested. 
An eigenvalue X of 7’; has converged if it is either multiple or the 
last component of the corresponding eigenvector is very small. 
Eigenvalues of TJ, that have not converged are considered spu- 
rious if they are also eigenvalues of T,:, ( see [Z] ), which is a 
strung indication that they are generated from round off errors. 
An equivalent criterion is the size of the first component of the 
corresponding eigcnvortor. As the calculation of the eigenvalucs 
of TzZ is about as costly as the calculation of 3_0 eigenvectors by 

f = 0.138 Ghz 1 

Figure 1: Z-Field of the lowest mode; k, = 78 /m 
a) empty vacuum chamber; b) coated vacuum chamber. 

Inverse iteration, this is the more efficient test in our case. Eigen- 
values that are neither converged nor spurious are still good val- 
ues, they are some kind of averages of a few A eigenvalues. The 
Lanczos iteration may stop if all good values in the desired range 
are converged. 
Treating mu&& eigenunlues: Normally, A should not have mul- 
tiple eigenvalues. The most common reason for multiple eigen- 
values is a symmetry of the problem that is not exploited in the 
formulation, and this should be corrected by the user. Multinle 
eigenvalues not caused by symmetry are possible, but rare. 

For m large enough, Tk almost certainly contains a few mul- 
tiple eigenvalues. Further copies of eigenvalues will be huilt from 
round off. If the eigenvalue is a simple A eigenvalae, the recon- 
structed A vectors will bc linearily dependent, and except for 
one of them may be numerical approximations to the null vec- 
tor. If the A eigenvalue is multiple, the reconstructed vectors 
will span the full eigenspace except for the extremely unlikely 
case that the round off is linearily dependent of a subspacr of 
the eigenspace. 

With our implementation, as soon as a Z’, eigenvalue has 
converged, it is frozen, that is for increasing n, only zero com- 
ponents are added. If this eigenvalue gets a higher multiplicit,y, 
the next T eigenvector is made orthogonal to the already exist- 
ing one. This guarantees that the first reconstructed vector is a 
good one, while the follwing ones usuaily are not. If the eigen- 
value is A multiple. the leading reconstructed vectors will have 
fairiy large angles, though they will not be as good ar could be. 

It may be - though there is so far no case known that. a 
multiple A eigenvaluc will pass unnoticed. T!lis may be avoidctl 
by starting a second Lanzcos procedure with a starting vector 
that is orthogonal to all cigenvectors to AT belonging to eigeri- 
values calcu!ated so far. This is not done at the moment and 
the problem of multiplicity is left to the user. If there is any 
doubt, it is advaisable to increase the number of iterations. If 
the ret-onstructed vectors to a multiple 7’ eigenvalue are almost 
linear dependent, the A multiplicity of this value can safely be 
taken as the number of independent vectors. 

Fj?gp.2;==] 

1 

. .._ .YLS, 
: :: ::7-,1.<;, 

;.y :;:‘:, 

.‘yy- * 
i: ?CqL- 

,-. 
: : ;‘:-I ‘y 2 

I, y ” 
. ri ~ .?A* / .,-- .” .7 _...- . ..I.. 

xljj __-- I’:i 

Figure 2: ,!?:-Field of the lowest 
mode at diirerenl frequencies f; 
a) f=0.07 Ghz, b) f=0.09 Ghz, 
c) f=0.15 Ghz. 






