1040

RF Characteristics of Vacuum Chambers with Arbitrary Cross Section
and Material Distribution

A.Fischerauer, T. Weiland

Technische Hochschule
Fachgebiet Theorie Elektromagnetischer Felder
Schlofigartenstr. 8, 6100 Darmstadt

B. Steffen

Forschungszentrum Jilich GmbH, ZAM,
5170 Jilich, Postfach 1913, Germany

Abstract: For accelerator vacuum chambers especially In
cooling rings the rf characteristic is of high importance. Within
a certain rf frequency range for example a certain wave attenu-
ation is required to decouple cooling antennas and kickers from
each other. A general purpose 2d-wave analysis program is pre-
sented which can calculate wave propagation characteristics in
arbitrary shaped chambers. The inside of the chamber may have
an arbitrary distribution of permittive and/or permeable mate-
rial. Losses are treated by solving Maxwell’s equations with truly
complex field vectors.

I. Introduction

The presented new CAD program calculates the rf character-
istics of waveguides. Thereby the only constraint on the wave-
guide is that it has to be homogeneous in the direction of pro-
pagation. It may have an arbitrarily shaped cross section and
may be filled with arbitrary, lossy, linear materials. Thus this
program is a very useful tool for designing vacuum chambers, for
instance with all kinds of coatings, or for developing new possi-
bilities for particle acceleration. The program represents a two
dimensional wave analysis computer code and solves Maxwell's
equation by the Finite Integration Algorithm and is part of the
MAFIA group of codes [1].

1I. Field Calculations

In order to evaluate the E-field and the H-field inside a given

structure, the integral form of Maxwell’s equations are discretized
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From now on z is chosen as direction of propagation. The
next step is to change the 3d problem into a 2d problem by
using some additional information. For an arbitrary waveguide
which is homogeneous in z direction the dependence of the elec-
tromagnetic field components on this direction of propagation is
known

= E(z,y) . e ikaz (3)

where E(;, y) represents the transverse field and k, is the wave
number. Discretization of equation (3) vields:

B = Ezy) e = E(z,y) - (1 - jk.02) (4)

for small Az. Relation {4) holds exactly, if Az goes to zero.
Using the fact that inside the waveguide

divDd =0 (5)

is true, the F, component can be eliminated and we obtain the
two dimensional form of the wave equation

wurleurlb,, — —K2E (6>

curleurlil, = —k; Ly, (6}
in matrix form. Here £, represents the transverse £-components
E,, is also an eigenvector of the matrix which describes the curl-
cur] operator and —k? is the eigenvalue. This eigenvalue prob-
lem is solved by an iteration algorithm. In general the matrix
is complex and so are its eigenvectors and eigenvalues. In order

to handle this truly complex problem a Lanczos algorithm was
chosen.

II. The Lanczos Algorithm

Lanczos - methods for the eigenvalue computations.

The eigenvalue computation for loss-free waveguides is usually
done by a polynamial iteration method. For lossy materials, the
eigenvalue spectrum becomes complex, and the task of finding a
suitable polynomial is far beyond reach, so that polynomial iter-
ation is very inefficient. Now it has long been realized that single
vector Lanczos procedures are at least as efficient as polynomial
iteration with an optimal polynomial for exact arithmetic, but
react in a somewhat chaotic way to round off errors, so that they
have only rarely been used. Recent results showed how these
problems can be avoided [5] (4] or isolated [2] [3] with mode-
rate losses in efficiency. The algorithm used here is an adaption
from [3] to the special situation of complex harmonic Maxwell’s
equations.

The basic procedure in [3] is the following: Let A be a matrix
and vy a vector (usually randomly chosen ). Set w; = vy,

vo = wo = 0,0, = 0 and compute the sequences v;, w;, a;, F;
defined by
Bis1vit1 Avy — oivy — Bivicy = i (7)
Binwipn = Alw — cqwi — Bawiy = L (8)
20, = wl{Av;— Bwi1) 4+ ol (Aw; — Bawiey)  (9)
ﬁi2+1 = ("3+1fi+1) (10)
With V., = {(t4,...,0m), Wn = (07, ... ,0T), the matrix
ap 0
- By o T .
=" =W, AV, (11)
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is the the m-dimensional Lanczos matrix to A and v;. In exact
arithmetic, the vectors vy, ..., v, and wy, ..., wn are biorthogo-
nal. With incresing m,the eigenvalues of T}, will converge against
the eigenvalues of A . If z is an eigenvector of T, to a con-
verged eigenvalue, then y = 2TV} is an approximations to the
eigenvector of A to the same eigenvalue. The quality of the ap-
proximation can be estimated reliably from the size of the Jast
component of the 7" eigenvector.

The algorithm requires memory for storing A and 6 vectors,
and the v; have to be stored on disk. The storage requirements
still may be more severe than the cpu requirements.

In finite precision arithmetic, the biorthogonality of the vec-
tors is lost, so the matrices T} have 'spurious’ eigenvalues that
have no correspondence to eigenvalues of A , and 'numerically
multiple’ eigenvalues that are multiple copies of eigenvalues of
A. In (2] and {3] ways of recognising spurious eigenvalues of T
and of treating multiple eigenvalues of T are proposed.

The Implementation

Testing for convergence: For certain m convergence is tested.
An eigenvalue A of T} has converged if it is either multiple or the
last component of the corresponding eigenvector is very small.
Eigenvalues of 7%}, that have not converged are considered spu-
rious if they are also eigenvalues of T2 ( see (2] ), which is a
strong indication that they are generated from round off errors.
An equivalent criterion is the size of the first component of the
corresponding eigenvector. As the calculation of the eigenvalues
of T2 is about as costly as the calculation of 20 eigenvectors by
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Figure 1: i-Field of the lowest mode; k, = 78 /m
a)empty vacuum chamber; b) coated vacuum chamber,
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inverse iteration, this is the more efficient test in our case. Eigen-
values that are neither converged nor spurious are still good val-
ues, they are some kind of averages of a few A eigenvalues. The
Lanczos iteration may stop if all good values in the desired range
are converged.

Treating multiple eigenvalues: Normally, A should not have mul-
tiple eigenvalues, The most common reason for multiple eigen-
values is a symmetry of the problem that is not exploited in the
formulation, and this should be corrected by the user. Multiple
eigenvalues not caused by symmetry are possible, but rare.

For m large enough, T+ almost certainly contains a few mul-
tiple eigenvalues. Further copies of eigenvalues will be built from
round ofl. If the eigenvalue is a simple A eigenvalue, the recon-
structed A vectors will be linearily dependent, and except for
one of them may be numerical approximations to the null vec-
tor. If the A eigenvalue is multiple, the reconstructed vectors
will span the full eigenspace except for the extremely unlikely
case that the round off is linearily dependent of a subspace of
the eigenspace.

With our implementation, as soon as a T, eigenvalue has
converged, it is frozen, that is for increasing m, only zero com-
ponents are added. If this eigenvalue gets a higher multiplicity,
the next 7" eigenvector is made orthogonal to the already exist-
ing one. This guarantees that the first reconstructed vector is a
good one, while the follwing ones usually are not. If the eigen-
value is A - multiple, the leading reconstructed vectors will have
fairly large angles, though they will not be as good as could be.

It may be - though there is so far no case known - that a
multiple A eigenvalue will pass unnoticed. This may be avoided
by starting a second Lanzcos procedure with a starting vector
that is orthogonal to all eigenvectors to AT belonging to eigen-
values calculated so far. This is not done at the moment and
ihe problem of multiplicity is left to the user. If there is any
doubt, it is advaisable to increase the number of iterations. If
the reconstructed vectors to a multiple T ecigenvalue are almost
linear dependent, the A multiplicity of this value can safely be
taken as the number of independent vectors.

Figure 2: F-Field of the lowest
mode at different frequencies {;
a) {==0.07 Ghz, b) {=0.09 Ghz,
¢) {=0.15 Ghz.
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F15ure 3: E-Field of the lowest mode, { = 0.6 Ghz;
inner radjus r of the coating of the bzg tube is

a) r=0.03 m, b} r=0.1 m, c) r=0.18 m,

IV. Applications

The first example demenstrates the effects of coating a va-
cuum chamber [6]. The inside of an empty chamber was coated
with a layer of a permittive material with u, = 1000 and a second
layer of & dielectric material with . = 20. Figure 1 shows the
lowest monopele mode in the empty and in the coated cham-
ber wherehy the wave number respectively the phase velocity
was kept equal. We see that the frequency goes down due to
the coating and the mode tends to concentrate its energy in the
permittive matertal. This effect grows with frequency as car be
seen in Figure 2.

As another example a dielectric structure was examined with
respect to its properties as an accelerating structure. Figure 3
shows the ratic of the parallel Ez-ﬁeld components at the centers
of the big tube 1 and the small tube 2 [T}

For lossy materials there is at the moment no graphic represen-
tation of the flelds, the program returns only wave numbers.

V. Conclusion

A new program for waveguide analysis was presented that
solves a truly complex problem by use of the Lanczos algorithm
in order to take into account losses in materials. Since only
two dimensions are needed to describe a waveguide which is ho-
mogeneous in the direction of propagation the number of dis-
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cretization points and according the dimension of the matrix
stays comparably small and so does the running time of the pro-
gram. Finally {wo examples demonstrated the applicability of
the code.
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