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ABSTRACT 

A high harmonic cavity (HHC) with a certain phase mod- 
ulation frequency can increase the longitudinal emit- 
tsnce and smooth the density distribution within a 
particle bunch. Such a cavity helps to prevent 
particle losses during passage through the transition 
energy. The speed of dilution and the quality of den- 
sity redistribution depend on the phase modulation 
program. In this report, we show how to choose such a 
program which will create traveling waves which push 
the front of high density from the center of the bunch 
to its boundary. Supporting results from machine and 
computer experiments are presented. 

which is synchronized with the particle's revolution 
frequency o by hw - 2nf, h is the machine harmonic 
number (h - 12 for the AGS), VH is the peak voltage of 
HHC driven by the frequency fH, fR/f - N is HHC har- 
monic number (N - 21 + l/3 for the ACS). 

Phase modulation produced by HHC is determined 
by the modulation program: 

ti - $a(7) - acosyT ( (1.7) 

with amplitude a. [radians] and frequency 7 [multi- 
plier of synchrotron frequency O,]. 

1. Basic Equations and Parameters 2. The Resonance Equation 

The synchrotron motion of particles within a 
stationary bucket in absence of the HHC is governed by 
the equations: 

aH, . 
-2 - - 2tiEo - Sin+,, IJE,/ 5 1, (1.1) 

,360 

The exact solution of unperturbed equations 
(l.l), (1.2) for any, say i-th partlicle, can be writ- 
ten by means of elliptic functions. To avoid complex 
technicalities, we will introduce an approximate solu- 
tion which is more convenient for the subsequent anal- 
ysis: 

%H, 
--9 
e&E, ' 

- -2&E,, I+01 2 IT (1.2) 

with corresponding Hamiltonian 

4Joi(T) - riCos(kiT + Pi), (2.1) 

where ri is amplitude, Sin2(ri/2) - 6E$,(o) + 
Sin*(+,i(o)/2), fii is initial polar angle, pi - 
arctg[6E,,(o)/@,i(o)], and ki - k(ri) is2 synchro- 
tron frequency, which can be approximated as 

k - k(r) - Jr (2.2) 

Let us assume that two particles start motion 
from the same position (6E1, +l). Let the first 
particle move under unperturbed conditlo~~s (1.1), 
(1.2), while the second particle moves under the 
influence of HHC according to (1.4), (1.5). Let 

Ho = - SE: - Sin2 QO . (1.3) 
2 

In the presence of HHC synchrotron equations are: 

an . c 
-2 - - 261s - Sin+ + cSin(N+ - $J), 6E2 < 1 + - , 

a+ N 

(1.4) 

aH . 
- - $ - -2&E, 
a6E 

191 2 = (1.5) 

with Hamlltonian 

H - -6E2 - Sin2 !- - :Sin* 
NJ - 11 

(1.6) 
2 N 2 

Both systems above are written in dimensionless form, 
where dimensionless time 7 - not is measured in units 
of synchrotron period To - 271/n,, l - d/:7, 
SE - (E - Ei,)&, g - ZqV/'?ra - (2fi,/ao) , 
a - h\ri I//?sEa, S - l/7: - l/-f:, E - vH/v. 
Subscripts s, t refer to synchronous and transition 
energy, subscript b refers to bucket, Eb is bucket 
half-height, q is particle charge, V is (total) peak 
voltage of main rf svstem, driven with the frequency f 
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Department of Energy 

AE - SE - 6E,, A+ - $I - @,. (2.3) 

Subtracting (l.l), (1.2) from (1.4), (1.5) and expand- 
ing SE,+ around &E,,+, to the first order of &E, A+, 
we will get 

i; + [Cos+, + ~NCOS(N$J, - $)]A+ - -fSinW, - II), 
(2.4) 

W(o) - A.+(o) - 0. (2.5) 

Thus, for every particle in the initial given bunch, 
there is a corresponding system (2.4), (2.5). Each 
system is specified by two parameters: initial ampli- 
tude ri and polar angle f?i. 

If we select all the particles having the same ampli- 
tude, say rf - K, then we can average (2.4), (2.5) 
over such an ensemble, where particles differ only by 
their angles fii. Denoting that type of averaging by 
angular brackets and assuming initial distribution as 
stationary we find: 

<Cos(N+, - $)> - J,(Nr)Cos$, -320s +,,> - J,(r), 
(2.6) 
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<S$(N+,, - $)> - - Jo(Nr)Sin$, (2.7) 

where Jo is the Bessel function of zero order. 
After the averaging (let us drop a" angular 

bracket and remember it by having Bessel functions as 
a reminder) Eq. (2.4) becomes 

Li + [Jo(r) t- eNJo(Nr)Cos$] Atp - cJ,(Nr)Si.n$. 
(2.8) 

Because Fourier series for Sin*, Cos$ are slow con- 
verging, we expand them within a segment 0 2 + < 4 by 
the least squares method into the sums 

Cos+ - c,(aj f C(7) - 

c,(a) + c2(a)Cos277 + c4(a)Cos477 + c6(cz)Cos677, 
(2.9) 

Si"# - S(7) - 

sl(a)Cos77 + s3(a)Cos377 + s5(a)Sin577, (2.10) 

where ci - ci(a), s. - s,(a) are know" (from least 
squares) poly"ornialsJof 6Jth (for ci) and 5-th (for 
s ) orders, 3 i - 0, 2, 4, 6; j - 1, 3, 5. Then the 
Eq. (2.8) becomes Hill's-type 

. . 
A$ + 1‘12 -thN(c~c~ + C(+CS + C6C6) ]A+ = 

h(slC1 i s3C3 + s5C5), (2.11) 

where Cm - COSnrT, 

h - L J,(Nr-), ,2 - Jo(r) + hNco(a). (2.12) 

The solutioll of (2.11), satisfying (2.5) is a sum of 
homogeneous ant. nonhomogeneous parts, Neglecting 
harmonics of higher than 6-th order, one can write a 
solution a5 

A+(T) - A(ept + oe-pt) (a0 + C, + S.~) + Cp, (2.13) 

where 

ca - a2G2 + a4C4 + a6C6, cp - Plcl + p3c3 + Pgc5, 
(2.14) 

50 - b2S2 + b4Sq 4 b6S6, sm - Sin m77. (2.15) 

The resonance strength p = pi(r) is a" eigenvalue of 
the homogensous equation, corresponding to (2.11); 
constants A and o are determined from initial condi- 
tions (2.5). A real-valued ~1 exists for any 7 and 
increases witI* 7 'up to 7 - 3 after which the increase 
is negligible. 

3. Dilution Criterion 

In phase space, the area within closed particle's 
trajectory is the particle's emittance. It is con- 
nected monotonically with the particle's Hamiltonian. 
The bigger the Hamiltonian absolute value, the bigger 
the emi';tance. So the Hamiltonian's derivative can be 
taken as a criterion of dilution. 

By differentiating (1.6) with use of (1.4), (1.5) 
we have dilution criterion (local in time) for any 
given particle: 

dH 
- (3.1) 
dr 2 N 

If the modulation $ is just a simple harmonic as In 
(1.7), then the maximal speed of dilution can be 
estimated as 

~ I arf 
- (3.2) 
d7 I 

1; " /$I - - . 
2N 2N 

By decomposing Q - e. + A+ and by avsraging over the 
ensemble of particles having the same initial ampli- 
tude r, we can represent (3.1) as 

dli E 
<-> - - Jo(Nr)Sin(NA+ V) li, , (3.3) 

d7 2N 

or, for harmonic modulation (1.7), as 

dH Wf 
<-> - - - Jo(Nr)Sin(NA$ - $)Sin77 ( 3 4 ) 

d,r 2N 

or 

dH a-if 
<--> - - - J,(Nr):C0s;u - 77) Cos(u t ,YT)], 

dr 4N 
(3.5) 

C4hCt-e 

i: - u(7) - NAc$(7) - nCos-y~. (3.6) 

111 (3.5) the expression in square brackets is tllr dif- 
ference of two non-linear phase waves. Each front 
moves with velocitjr ; - 7 and ; - -7 respectivel:+. 

T‘ne averaging over ensemble i > is not gooc 
enough to make the dilution criterion other thar 
instantenous, which is of lfttle value for a" oscil- 
lating process. In order to make a working tool, we 
have to average <dH/dt> over a characteristic period 
of oscillations. I" other words, we have to average 
over T - 2n/7. 
ing by7a bar. 

We will denote that type of averag- 

By expanding cosines in (3.5) into the power 
series up to the second order and double averaging 
over T 7' one can write 

- 
dli a-y 2, = 

<-? - - - Jo(Nr) 7A$. (3.7) 
dr 2 

By extracting the main term from A$ one gets 

dH 
<->-- Jo(Nr)c( (3.8) 

dr 

where c(a) is a function independent of ? yet depen- 
dent on all the coefficients in (2.13). The sign of 
c(a) is like the sign of Bessel function J,(a): Jl(a) 
> 0 if 0 < a < 3.8, Jl(a) < 0 if 3.83 < a C 7. 

The relationship (3.8) does not hold for instan- 
taneous or long term behavior. It holds during 
times comparable with the synchrotron period. 
After that, the particles which were described by 
(3.8) can change their amplitude r so much that r can 
not be considered as independent of 7 and all appli- 
cations of Section 2 should be repeated for a new r 
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starting w?tll a new 7 = 0 

4 Discussion of the Resclts 

We tlave seen that the dilution criterion depends 
on the product Jo(Nr)Jl(a), where r is the particle 
amplitude and a is the phase modulation amplitude. 
If u is a constant over a dilution cycle then the 
sign of the product is determined by Jo(Nr). Shown in 
Fig. 1, the whole range of amplitudes, r is broken by 
J,(Nr) intcl segments in such a way that Jo has oppo- 
site signs for a"? two adjacent segments. Then the 
phase s,'i~cc~ , occupied by B bunch, will. be broken into 
ri rl[:' If thc>rc is a dilur.ior~ in oilf riny, (JoJl > 
3) tllr~rl th*2ri: is G contrection in the next one. The 
strengtk~ of dilution (contraction) is proportional to 
t t 1 i' p ti i, k .smp! itudr of J, (Nr-) over tbe ring area. 
'I'tic st rcri{:t.h decreases from bunch center to the boun- 
dary. 

Fig. 1: An oscillating fwlction Jo(Nr) creates dilu- 
tirLg and contracting rings. 

Tll<!rC 'ire three: meclxinisms conLribut:ing to bwlch 
dilutioll. The first is "microstatistic". Non - 
linearit;; of thr: motion creates noise-like effects 
whicll jn,r,.x:;cs 
resomnce, 

himch cmittnn;e slowly, The second is 
Ei.ther sys:ernstic or parametric (like one 

was described here) resonances change particles' 
amplitudes quickly. The third is "macrostatistic". 
The I-inGs of intermirtcn:. dilution create two flows of 
particle:,, moving towards the bunch center and back 
with the velocities. approaching zero at the boundar- 
ies of rings. Due to decreasing dilution strength 
frolr center-to-boundary, the flow from t.l~e center t.o 
the boundary will always prwail over opposite flow. 

1lowevi:r ( near the bunch boundary the difference 
of strengths (maxlJ,(Nr)I ) of two adjacent rings is 
smaller thar. near the bunch center. This allows us to 
conserve bunch wnlttance while dilution is in effect. 
All we nci+tl to do is calculate Jo(Nrb) for the initial 
tn1nc11 jl i th rt, as bunch boundal-y amplitude Next we 
choose 0 to sntisty 

Jo ( N z-:, ).I 1 ((1 ) i 0 (4.1) 

This wjll I-:;ikr the boundary ring contracting and bunc\i 
emittancv cooserving. Figures 2 and 3 show machine“ 
and col:lputor experiments. 

Fig. 3: l,nf~ is "conserving," emittence, right is nof 

The bottom curve in a Fig. 2 is the line Lntt'n 
sity of an initial bunch. The subsequect 5 ,'urv<'?i 
ascending, are taken during 100 ms of dilution The 
dashed lines in Fig. 3 are just the initial line den- 
sity shown for comparison. The solid lines are calcu- 
lated during the dilution. Within the bunches of par- 
ticles, shown as dots, we can display a circle repre- 
senting the initial emittance. 
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