A PROPOSED SUPERCONDUCTING PHOTOEMISSION SOURCE OF HIGH BRIGHTNESS

H. Chaloupka, H. Heinrichs, H. Piel
Bergische Universität-Gesamthochschule Wuppertal
C. K. Sinclair
CEBAF, Newport News, Virginia, USA
F. Ebeling, T. Weiland
DESY, Hamburg
U. Klein, H. P. Vogel
Interatom GmbH., Bensberg

Abstract: Short wavelength free-electron laser oscillators require electron beams of high brightness and, in some application, high average power. We describe the design of an electron injector for the production of a bunched cw electron beam of high brightness, low energy spread, and potentially high beam power. It consists of a superconducting reentrant cavity housing a photoemission cathode which is irradiated with short light pulses of a mode-locked frequency doubled Nd:YAG laser. The experimental layout of the "superconducting photoemission source" is described together with its components: the photocathode preparation chamber, the cavity, the cryogenic setup, and the beam analysis system. The conceptual beam parameters are discussed and first results of an emittance calculation using a particle in cell computer code are given.

1. Introduction

High brightness electron beams are required for a number of accelerator applications as well as for short wavelength free-electron laser (FEL) oscillators. Photoemitted cathodes irradiated by cw or pulsed lasers are sources of very bright, high current density electron beams. Electron injectors based on photomultiplier technology are presently under development at several laboratories [1,2]. FEL's operating in the XUV and soft x-ray wavelength range require low energy spread, long macropulse duration, and high average power as well as high beam brightness [3]. Superconducting rf linacs, including superconducting injector are the favoured candidate technology for these applications. Due to the high Q factor these linacs can be operated even in a cw mode in which a high peak current bunch is placed in every rf bucket. Furthermore, the high Q factor opens the possibility of energy recovery by recycling the beam through the linac [4].

Superconducting cavities for accelerator application have been extensively developed in the last years [5]. Peak surface electric fields of more than 30 MV/m can be reached reliably and maintained continuously.

II. Conceptual Parameters and Experimental Setup

Based on the present achievements with superconducting cavities, photoemission cathodes, and laser systems, it is reasonable to design an electron injector with the parameters of Table 1. Different columns in this table give the performance anticipated with different laser systems. The cathode and the photocathode are the same in all of these versions.

Table 1
Conceptual electron beam parameters

<table>
<thead>
<tr>
<th>Beam kinetic energy (MeV)</th>
<th>1.3</th>
<th>1.3</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak current (A)</td>
<td>2.3</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>Charge per bunch (nC)</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Pulse length [ps]</td>
<td>70</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>Repetition rate [Hz]</td>
<td>125x10^6</td>
<td>125x10^6</td>
<td>100</td>
</tr>
</tbody>
</table>

The construction of the actual electron source will follow the development of a good quantum efficiency photocathode on a niobium surface. Various choices for the laser system will permit many operational modes, from cw beam with relatively low peak current, through pulsed operation with various combinations of duty factor and peak current, to a "burst" mode with very high peak current bursts composed of a small number of micropulses.

Fig. 1 shows a schematic view of the experimental setup for the electron injector and its beam diagnostic system. The superconducting cavity, which is of reentrant type, is shown in more detail in Fig. 2.

It is mounted in a vertical bath cryostat, as this arrangement is both easier to operate and much less expensive than a horizontal cryostat. After preparation, the cathode is transferred under vacuum into the cavity. Due to the low rf losses of the cavity wall the cathode is connected to it via a band rejection filter.
The laser beam enters the cavity through the beam tube from the bottom of the cryostat and illuminates the cathode. The electron beam is accelerated in the gap of the reentrant cavity, its emittance can be measured with wire scanner monitors below the cryostat. Then the beam is bent isochronously in a magnetic spectrometer to measure its energy before it passes a thin fused silica screen to create Cerenkov radiation. This can be analysed with a streak camera. The charge of the beam is measured with a Faraday cup at the end of the beam line.

### III. Components

#### The cathode preparation system

The most extensively developed cathodes are gallium arsenide (GaAs) and cesium antimonide (Cs$_3$Sb). The latter is easier to fabricate than the GaAs photocathode, and is rather more resistant to degradation by residual gases. The Cs$_3$Sb photocathode has higher optical absorption than GaAs, and is typically thinner. As a consequence, it is able to produce shorter electron pulses than GaAs. It has, however, a considerably lower quantum efficiency than GaAs, which places greater demands on the optical source. If there are no limitations from space charge, field strength, and available charge, the current delivered by a photocathode is

\[ I = P \cdot \frac{QE}{E_{ph}} \]

where \( I \) is the photocurrent in Ampere, \( P \) is the laser power in watts, \( QE \) is the photocathode quantum efficiency, and \( E_{ph} \) is the photon energy in electron volts.

The development work on cesium antimonide photocathodes has been done by Los Alamos National Laboratory and the Thermo Electron Corporation. In a series of developments over several years, these two groups have demonstrated both high current capability and high brightness in electron guns. An rf gun operating at 1300 MHz has reported currents up to 390 Ampere from a 1 cm$^2$ cathode mounted in the rf cavity wall, and has reported in addition beam brightness figures between 1.4 and 9.10$^{10}$ A/(m-rad)$^2$. The largest single pulse charge reported by the Los Alamos group was 27 nC. There seems to be no reason why such photocathodes cannot deliver beams of 1 to 14 nC per bunch at bunch repetition rates likely limited by the available rf power and with beam brightness of 10$^{11}$ A/(m-rad)$^2$ or greater.

The photocathode preparation chamber is shown schematically in Fig. 3. The system is very similar to that developed at SLAC for the study of III-V semiconductor photocathodes (6). It will be used to explore a variety of photocathode preparation techniques, primarily for the alkali antimonides. Initial work will be done with cesium antimonide but we anticipate working also with higher quantum efficiency cathodes, such as sodium potassium antimonide.

### The laser system

The characteristics of the cathode will determine the demands made upon the laser system. The only reasonable (and currently the only commercially available) laser system which is capable of producing cw trains of picosecond pulses is a cw mode-locked, frequency doubled Nd:YAG or Nd:YLF laser. At the wavelength of a frequency doubled Nd:YAG laser, i.e. 532 nm, the best cesium antimonide photocathodes have a quantum efficiency of somewhat over 4%. According to Eq. (1) it is possible to produce an average current of 20 mA if the average laser power is 1 watt. For economic reasons, our test system will not be equipped with a high power klystron. Therefore the duty factor has to be restricted to about 2%.

Typically, mode-locked laser systems produce a pulse repetition rate between 70 and 160 MHz. For a cavity frequency of 500 MHz, the laser may be conveniently operated at the fourth or eighth subharmonic of this frequency, or the laser beam may be optically multiplexed to 500 MHz. For the example above one gets in case of operation at the fourth subharmonic a peak current of 2.3 A, respectively 0.16 nC per bunch.

In a frequency doubled mode-locked Nd:YAG laser the pulse width is about 70 ps or less. These pulses may be...
shortened by the use of YLF as the lasing medium, and by
the use of intra-cavity etalongs to effectively broaden the
laser cavity bandwidth. Pulse width of 5 to 10 ps should be
obtained by these methods. For a 500 MHz cavity, these
pulses occupy between 1 and 2 degree of RF phase, which
produce a narrow energy spread. The amount of charge
that can be removed in such short time from photocathode
and the degradation of energy spread in such a pulse has
to be measured. Guide lines are given by the Los Alamos
results. There 1/6 of the available charge, as given by
Gauss's law was removed in a 60 ps pulse and no bunch
lengthening was observed.

None of the commercially available laser systems has
the possibility to be tuned and frequency locked to an
external standard, e.g. to a superconducting cavity which is
a good frequency standard. Problems may arise from insta-
Bbles in light intensity and from a jitter of the light
pulses in time.

To operate the system in a high current density regime
with large pulse charge and low duty factor, it will be
necessary to amplify the laser output for shorter periods
of time. This can be done by chopping the laser output
with a pockels cell to produce microsecond duration bursts
of mode-locked pulse trains at repetition rate of 10 to
100 Hz. These pulse trains are then amplifying with a laser
amplifier. Peak currents of more than 200 A are expected.

The superconducting cavity
Due to the high Q factor of the superconducting
cavity the main advantage of it is the high field strength
which can be reached and maintained continuously. It is not
to be optimized for high shunt impedance, but rather to
achieve high surface electric fields at the cathode and high
accelerating voltage. In addition, the cavity shape and fields
must be optimized to minimize emittance growth. Detailed
particle dynamics simulation must be carried out to achieve
these optimizations. The reentrant cavity shaped is well
suited to obtain high cathode fields, and offers the advantage
of relatively small size even at 500 MHz frequency. In an
earl stage of the injector program the cavity will be built
to study its field limitations under special consideration of
electron multipacting, normal conducting defects and field
emission.

Parallel to this several possibilities of mounting the
photocathode in the wall of the cavity will be tested.
Specifcally a band rejection filter will be designed and
tested in a copper model of the cavity.

The beam diagnostic system
An important aspect of understanding the dynamics
of photo emission and the electron beam in the injector is
the ability to perform time-resolved diagnostics with the
appropriate resolution. The relevant time structure in cw
operation is established by the 5 resp. 70 ps long micropul-
ses separated 2 resp. 8 ns. Due to the low average microwave
drive power available, the beam must be chopped into
macropulses of 1 to 100 ps duration. The large range of
time scales involved can only be analysed with sufficient
precision with a streak camera. Following measurement of
the beam divergence and emittance with wire scanner moni-
tors, the beam strikes a thin fused silica Cerenkov radiator.
This provides a visible light signal which accurately follows
the time structure of the beam. The light is analysed with
a time resolution of 3 ps by a commercial streak camera.

Beam dynamics
The dynamics of the particle motion are simulated
with the partic-in-cell code TBCI-SF [7]. The code starts
with the cavity fields calculated by URMEL. The code
simulates the movement of the electron bunch through the
cavity taking into account the space charge forces acting
on the bunch. In a series of calculations the cavity shape
will be optimized with respect to a reduction of emittance
growth. The first calculations were carried out for the
preliminary design shown in Fig. 2. Assuming a surface
field at the cathode of 16 MV/m a bunch generated from a
10 ps laser pulse carrying 0.13 keV is accelerated to an
energy of 1.8 MeV with an energy spread of 0.25%. When it
leaves the cavity at the far end of the cutoff tube it has a
length of 2.6 mm and a transverse emittance of 60 n mm
mrad. With small changes of the cavity shape it was possible
in a second step to reduce emittance to 45 n mm mrad.
There is a good chance to reduce this value further and to
increase the performance of the injector.

Acknowledgement
This work is funded in part by the Minister for Science
and Research of the State of NorthRhine-Westfalia.

References
[1] P.E. Oettinger, R.E. Shefer, D.L. Birx, M.C. Green,
Photoelectron Sources: Selection and Analysis, in
Proceedings of the 9th International FEL Conference,
Williamsburg (to be published).
Proceedings of the ICFA Workshop on Low Emittance
Beams, Brookhaven National Laboratory, March 1987.
BNL 52090.
and J. Edighoffer, "Development of the SCA / FEL for
Use in Biomedical and Materials Sciences Experiments", Nucl.
on RF Superconductivity, ANL-PHY 88-1, Vol. I.
Proceedings of the Symposium on Advanced Accelerator
Simulation of High Power Tubes with TBCI-SF", these
proceedings.