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Deflection Systems in Medical Linacs

Leonid Sagalovsky®
Siemens Medical Laboratories, Inc.
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Abstract

Different requirements and systems for radiation machines are dis-
cussed. Bending magnet used in Siemnens units is described to illustrate
methods of computer design.

1 Imtroduction

Deflection magnet is one of the most critical elements encountered by
the beam in a medical linear accelerator. It is common practice in radi-
ation treatment systems to have the accelerating waveguide exiending
in a horizontal direction and then to bend the emergent electron beam
magnetically into a vertical plane. In the X-ray mode the beam then
strikes a target and generates an X-ray beam; alternatively, the clec-
tron beam itself may he used for treatment.

In addition to bending, a successful deflection system must also pro-
vide stigmatic and achromatic focusing as well as satisfy spatial con-
straints of the treatment head assembly. In order to vary the angle
at which the beam is incident on a patient, the head assernbly rmist
be able to rotate about the horizontal axis and to pass underneath
the patient. Therefore, the radial extent of the deflection system with
respect to the axis of rotation must be minimized. Finally, a practical
magnet. must be simple, easy to manufacture and use readily available
materials and fabrication techniques.

This paper describes the deflection systerus used in modern radiation
therapy machines that satisfy all of the above criteria.

2 Optics Requirements

In most applications of X-ray therapy one requires high uniformity in
the radiation field, which is determined by the optical properties of the
beam at the bremsstrahlung target. Three conditions must be satisfied
to insure symmetry and flatness of the resultant dose distribution:

s Small size of the spot.
+ PFixed position of the spot on the target.

o Incidence normal to the target.

The latter two points are illustrated in Fig. L.

The electron accelerator beam is typically characterized by small
diameter {< 6 mm), very small divergence angle (< 13 mrad) and up
to 20% energy spread [7]. The deflection system is required to transport
this to a beam of < 3 mm diameter and < +7 mrad divergence at the
target over a wide range of electron energies, typically from 5 to 25
MeV. The beam optical constraints can be summarized as follows:

1. The system must be achromalic, i. e. it must bring originally
paraxial particles of different energies to the same focus. More-
over, particles must not diverge but remain parallel after reaching
the focal point; otherwise, a change in the beam mean energy will
result in a change in mean angle of the beam at the target and
hence in the x-ray field asymmetry.

2. Originally divergent particles eminating from the same point must
be focused to the same point also.
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Figure 1: Resultant X-ray dose distribution for: (a) properly aligned beam,
{b) beam with an angular divergence Ad, (c} beam with a radial displacement
Ar. From [1].

3. Particles starting out parallel must remain so al the end of the
system.

4. Spatial focus for both the radial and transverse direction must
occur at the same point along the central trajectory. In this case
the system is said to be stigmalic.

3 Typical 270° Systems

3.1 Mathematical Formulation

Mathematical design of a deflection system begins with laying out the
ceniral orbit reference trajectory along which particles of design mo-
mentum pg travel in the median (symmetry) plane. The task is then
to configure the magnetic ficld so that the phase-space deviations from
ithis design trajectory satisfy the requirements outlined in Section 2.
Let us designale s as a distance along the central orbit and define z,
v to be the latera] displacements from ihe central orbit in the horizon-
tal and vertical plane respectively, ' = dz/ds, ¥ = dr/ds to be the
angular divergences, and & = (p
Lion. A general solution z{s), y(s) te the electron transporl problem
involves a second-order differential equation. Since the variables are
“small” we can express the solution as a Taylor series in the initial
conditions. In linear approximation each magnelic element can then
be represented by a lranspori matriz relating the final to the initial
coordinates. The matrix approach is used for the preliminary design
of the system; the transport matrix for the entire system is given by
the product of matrices for individual magnetic elements. Analytic ex-
pressions for matrix elements of common accelerator components have
been worked out in the literature {2,4,9,10] and are used in design com-
puter programs such as TRANSPORT [3L. The general linear solution

Po )/ po 10 be the momentum devia-



can be written as follows:
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Designing a system with d, = d’, = 0 at the target location would
correspond to satisfying the first constraint of Section 2. Similarly,
requiring s, Sy 0 and ¢, = 0 at the same point would
take care of the second and the third (as well as the forth) constraint
respectively. Then, ¢;, ¢, would determine the size of the spatial focus
and s, s

characterizing the optics; our deflection system must provide at least

the divergence angle. In total, we have 10 parameters

as many to work with.

3.2 Common Optical Schemes

A three-sector 270° double achromat system due to Brown ‘5] is shown
in Fig. 2. It consists of three uniform field magnets, each providing a
90° deflection, and short connecting drift tubes. Two energy selection
slits placed at 135° to the entering central trajectory intercept all par
ticles outside = 3% momentum range. Entering lateral displacements
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Figure 2: Three-sector achromal: cross-section view in the bend and the

cross plane. From [1,.

€z, ¢y and angular divergences s, s, are reproduced at the target plane
with no significant increase in magnitude. The design parameters var
ied to satisfy the optical constraints are: the pole face rotation angles
with respect to the design trajectory, the lengths of the drifts, and the
lengths of the sectors. This system is employed in the Varian Clinac
I8 trealment unit which operates over the 6 - 18 MeV energy range.

A slightly different three-magnet systemn '6; is shown in Fig. 3. Here,
the dipole magnets deflect the beam alternately in opposite directions,
the first and second by angles of less than 50° and the third by an
angle of at least 90°. Such a design, with the optical properties being
the same as thuse of the previous system, is more compact in the
direction in which the beam exits; the height of the head assembly is
thus reduced. Philips uses this system for its §I. 25 linac.

Schematic diagram of the two-dipole, doubly achromatic 270° system
7] is shown in Fig. 4. The first bend is 180° or more, the second 90° or
less. The dipales are preceded by an antisymmetric quadrupole doublet

1495

I—
R e—— r ]

[

Figure 3: Three-magnet alternate achromat: median plane lay-out From

(6.

Figure 4: Two-dipole achromat with input quadrupoles. This design mini-
mizes distance h. From [7].

to match the input beam spatial characteristics to the magnet focusing
properties. The net effect is to reduce the height by approximately
one bending radius over the design in Fig. 1. Quadrupoles’ focusing
gradients, lengths of drifts, pole lace rotation angles, and one of the
bend angles are the free parameters in this design employed by the
AECL Therac 25 and suitable for 5 — 25 MeV.

A single-magnet systemn due to Enge {8] is shown in Fig. 5. It com-
bines two uniform regions with the nonuniform gradient section in-
between. Its pole face angles can be adjusted by a pair of moveable
shim pieces for optimal spatial focusing. Another pair of shims adjusts
the angle which determines the radial field gradient. Free design pa-
rameters are pole face rotation angles, middle section’s gradient and
field strength, as well as lengths of the drifts and bend angles in the
uniform sections. The Siemens Mevatron treatment unit employs the
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Figure 5: Enge single-magnet achromat: angles a,, o3, and ay can be ad-

Justed by moveable shims to satis{ly optical constrainls. From [8].

bending magnet based on Enge's design; a more detailed description
is given in Section 4.
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3.3 Fringe Fields and Fine-Tuning

Magnet edges contribute important focusing properties {1]. In initial
desipgn one assumes that the vertical field begins and ends abruptly
near the entrance and the exit of the magnet. In this approximation. a
pole face tilt with respect o the design trajectory produces equal but
opposite focusing action in the two planes. In practice, fringe fields can
be extended over appreciable distances changing the optics prescribed
by the design {one effect is redoced {ocusing in one of the planes,
another is that the particle of nominal momentum py starting out on
the central orbit no longer continues to stay on it), The second and
higher order aberrations also contribute to disrupt the linear design
performance [2}.

One can try to cure these problems by fine-tuning the beam, e g
by winding a small trim coil about a pole to steer the particles. The
next section addresses the “fine-tuning” of the design itself.

4 Siemens Deflection System

Bending magnet used in the machines produced by Siemens Medical
Laboratories, Inc. is based on the design in Fig. 5. The crucial difler.
ence is the absence of moveable shims and the shape of the gradient
section. The lay-out of the magnet and one of the gradient pole pieces
are shown in Fig. 6. Two important factors contribute to make the

design rey

gradient section

Figure 6: Schematic view of the Siemens magnet. Non-uniform field in the
middle section is produced by two poles shaped as shown.

optical properties of the magnet differ from those of the linear design:

e Fdge effects. Long extended fringe felds introduce astigmatism
[2.9] and chromatic aberrations [11].

s Gradient section geometry. The pole pieces do not possess rota-
tional symmetry making the curves of constant magnetic field to
be straight lines rather than circles as assumed by the linear de-
sign; the effect is that the particle following the design trajectory
gets “shifted” in the non-uniform region.

One can try to recalculate the transport matrices taking the above
However, analytic expressions are not readily
available and a useful parametrization of the fringe field is not obvious.
A more practical approach after all, we are dealing with a very
simple systemn - involves ray tracing.

It has been shown [4] that the optics of a system is fully determined
{to any order) by specifving five representative trajeciories; they are
the linear solutions c{s), sz(8), de(s), cy(s), and s5,(s) mentioned in
Section 3. We can obtain them numerically from the equations of
motion by making some judicious choices in initial conditions. For
example, suppose we want to know ¢, al some point s; in the sys-
temm. We would solve the differential equation for 2{s;) with all initial
coordinates except g equal to zero. Then, we get (see 3.1):

points into account.

We pick several z¢'s and average (Lhe deviation from the average tests
the non-linearity of the system). Fig. 7 illustrates this procedure for

the gradient section. Other four characteristic rays can be obtained in
the similar manner {12]. Of course, one needs the magnetic fields in dif-
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Figure 7: Rays for the determination of ¢p and . Here - 5mm < go < bmm
and 2§, = yp = ¥ = & = 0, . e. the rays siart out in the median plane parallel
to the central ray. The focusing effect is quite noticeable at the end of the
system.

ferent regions to input into the differential equation. These have to be

measured; however, one does not need the complete three-dimensional
mapping: for example, in the fringe region it suffices to measure the
field along the line perpendicular to the pole face [9,11].

Given the initial design of the system, one can do “fine-tunining”
on a computer: by computing the change in characteristic rays due
to slight adjustments and using them as an input for a graphics pro-
gram, one obtains an intractive way to alter the design and observe
the resulting optical changes.
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