1199

ARCHITECTURE OF THE LEP APPLICATION SOFTWARE

Jean-Pierre Koutchouk
CERN
('H-1211 Geneva 23

Abstract

A thorough analysis of the requirements for application software
is presently being done for LEP. To complement and unify this
approach, a synthetic or generic model of the LEP control has
been developed. The accelerator is viewed as an automaton with
a limited number of macroscopic states. Each state is represented
by a data structure. The transition between states is actuated by
tasks (application programs): they are grouped into families with
similar functionalities witl respect to the machine states. It is
shown how this organization attempts to map the requirements
of reliability, flexibility and extendability into the LEP control
systen.

1 INTRODUCTION

A significant effort is presently invested in the specification of
the application programs necessary to operate LEP. This paper
describes an architecture integrating them in a consistent entity.
The first aim is to enforce systematics in the operation of LEP
which should result in an improved efficiency, reliability and flex-
ibility . Several of the principles proved their value in the field
when operating the CERN-ISR. The second aim is to define at
an early stage the data structures which interface the application
programs.

2 OPERATION REQUIREMENTS

There are basically three modes of operation, each defining some
specific requirements :

1. The commissionning/start-up/maintenance mode requires
easy access to individual hardware or data modules and the
ability to quickly write small programs. This is best handled
following the principles of the SPS control system [1].

2. The machine studies require mainly flexibility :
o the ability to invoke on-line the LEP models to modify

important parameters, in a controlled way.

¢ an efficient storage and retrieval of measured data, prop-
erly tagged with whatever information is necessary to
interpret them.

o the logging of the machine evolution to help understand-
ing the observations.

3. The luminosity production requires efficiency and reliability .
These are achieved not only by the quality of the software but
even more by the minimization of the consequences of hard-
ware/software/human errors. Indeed, together with the lim-
ited capabilities of predicting the luminosity and background,

these errors are responsible for the "inertia” in changing pa-
rameters related to the significant learning period.

In order to act on all these aspects, it is necessary to reduce
complexity, to have fault-tolerant operation and to facilitate

recovery .

¢ operation should be modular at a higher level than a
program: LEP operation can be viewed as an automaton
making transitions between a small number of important
states; these states are reflected in data structures, that
may be pointed at, archived...

Three instances of the machine states should be consid-

ered simultaneously : what a state should be {Reference),
what it is (Current) and what it would be (Target) if cal-
culated corrections would be applied. This allows a sys-
tematic separation of computations from control and pro-
vides a wide spectrum for checks and recoveries.

3 CLASSIFICATION OF APPLICATION
PROGRAMS

In order to fulfill the operation requirements, the data must sys-
tematically be separated from the programs. On figure 1 the
data are grouped so as to emphasize three classes of application
programs which have different roles.

e the real-time applications programs directly interact with the
LEP hardware or with the data structures describing the ma-
chine states. They must fulfill the requirements of efficiency
and reliability.

the model programs are accelerator physics programs which
predict accelerator and beam parameters (Reference states).
They must be general and expandable to provide the required
flexibility. It is intented for LEP to use MAD [2] for the

optics.

the study programs allow the progress of accelerator physics
applied to LEP. This is usually referred as modelling. They
need not conform to any standard; they can only interact with
some well-defined data-structures to avoid any interference
with the real-time processes.



1200

MODEL
BEAM
NNAMICS

COMEUTE

e o RCCELERATOR
i OEL ERATOR AP ONENT LEP
PHYSTCS CRIPTION

MACHINE /BEAM
ARAMETERY 4

B CAL CULATE
SET/READ,
ADJLIST LEF

ACCELERATOR

PARAMETERS

DESCRIPTION MEASURED /READ
4 PARAMETERS

stud YrG
{modelin m?’r

1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
(
i
|
1
i
"
1
1
me
1
1
{
1
1
I
{
1
1

i Model programs

Real—time application
pragrams

ms to g

Figure 1: classification of application programs

The purpose of this classification is economy : it shows that only
a subset of the application programs - the real-time ones - require
a strong organization and hence an added complexity in the im-
plementation. There is more freedom for the other programs.
Unity is guaranteed by the interface to common data structures
and probably by a standardization of the man-machine interface.

4 ARCHITECTURE OF THE REAL-TIME
APPLICATION PROGRAMS

The architecture shown on figure 2 embodies the major operation
phases and the data structures necessary to fulfill the require-
ments defined so far.

1. In the data preparation phase, the Reference sequence of
states is either created or reloaded from the archives; the LEP
model is invoked for Twiss parameter calculation,... which 4
become part of the states. The resulting data structure is
called the Reference Data Set. It remains unchanged unless
a learning mechanism is activated.

2. The hardware control function is dedicated to set-
tings/readings and measurements; its inputs are found in the
Reference Data Set in case of stable operation. Its outputs
define, at least partially, the actual machine states. They are
stored in the Current Data Set. The information unit being

a state, any measurement is bound to a description of the
accelerator; this ensures that it can be correctly interpreted.
The Current Data Set furthermore keeps track of state mod-
ifications.

Check of the transition rules is done at this stage to prevent
errors.

. The "feedback” loop processes information from the Current

Data Set and produces target states (e.g. tune shift) stored
in the Target Data Set. The target states not only consist in
increments to controllable parameters but equally in predic-
tions of beam or machine parameters.

The hardware control function finds then its input in the Tar-
get Data Set. Facilities are foreseen to select a specific state
in the Target Data Set, display its corresponding predictions,
scale the increments by a factor or carry knob-driven control.

. The learning mechanism allows modifications of the Refer-

ence Data Set, for example when better performances are
achieved in one run; this is especially interesting for machine
studies.

If a definite improvement is achieved, it may be archived for
use by later runs. In this case, the preparation phase is re-
duced to the reloading of the Reference Data Set, or even to
nothing in case of stable operation.



1201

COFERATOR ALCELERATOR
PIRECTDVES DESCRIPTION . — ~ _

Learning

mMacanisim

- 'Et Y
‘ UFDATE |
. 9 WHEN ,
o {coMPUIE MPROVE (R
o (OPTICS & #

REFERENCE TARGET CURRENT
DATA SET DATA SET DATA SET

Figure 2: architecture of application programs

5. A sophisticated access mechanism to the archives is being 6 ACKNOWLEDGEMENTS
developed [3], based on associative search, in order to fully

exploit the accumulated information and to allow the man- I would like to thank my colleagues of the LEP Application Anal-

agement of this large volume of data. ysis working group and especially J. Poole for their comments.
The concepts developed should make it easy to trace the devel- References
opment of a run, allow to go back in the sequence of states or

state modifications, or even to restart {from the Reference Data 1] M.C. Crowley-Milling, CERN 75-20, Dec. 1975
Set. O tion efficiency and flexibility sh thus be i d.
e peration efficiency and flexibility should thus be improve (2] E. Keil, F.C. Iselin CERN /LEP-TH /85-15, 1985

5 CONCLUSION (3] J. Poole, CERN-LEP Note 571, 1987

This architecture of the LEP application software has given a
framework for the analysis of the individual tasks and has helped
in the definition of the required data structures. The modularity
introduced should equally allow a smooth transition from manual
to automatic operation.



