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Abstract 

The CT.4 contra! system provides on envtronment in which the 

automation oj a state-of-the-art accelerator can be developed. Ir 

mc1kes use of com.mercialiy available computers, workstations. 

computer ne:works, rndusrrini I10 equrpment. and software. This 

system hns built-/n supervisory control (like most accelerntor control 

systems), tools to support continuous control (Itke the process control 

industry). and sequential control for automatic start-up and fault 

recovery (like few other accelerator control systems). 

Several software tools support these levels of control. a real-time 

operating sys:em (VxWorks) with o real-time kernel (VRTX), CI 

configurarion database. a sequencer, and a graphics editor. VxWorks 

supports multitasking. fast context-switching, and preemptive 

scheduling VxWorksiVRTX IS o network-based development 

environment specificoUy designed IO work in partnership with the 

UNIX O~~rQtin~ system A database provides the interface ;o the 

accelerator components. It consists of a run time lrbrory and a 

databose conJiguration and editing tool. A sequencer /nitrates and 

controls the operation of ali sequence programs (expressed (IS state 

programs). A graphics editor gives the user the ability to create color 

graphic displnys showing the state of the machine in etther text or 

graphics form. 

Introduction 

The control system for the Los Alamos Ground Test Accelerator 
(GTA) is required to probide complete accelerator automation That 
15. it must provide automatic start-up, opumization, sreadv state 
running. and shut-down. A more complete description of the 
automatIon lisues and the levels of control required 1s found in [ 11. 
In support of these requirements. the control system is hems deslgned 
wrth these goals m mmd: 

(1) Prowde early support for testmg and commissioning GTA 
subsystems. This 1s to allow the physicist use of controls in order to 
check out components and to develop an early understanding of 
accelerator subsystems. 

(2) Provide support for automation experiments. Currently. the 
maln emphasis is on rhe ion source and output optics automation. 

(3) Provide a system that is flexible and extensible so that the 
potentially difficult problems of building a completely automated and 
optlmlzed accelerator can be solved. 

The hardware and software components of the control system 
make use of commercially available components: workstations, 
networks, indurtrlal Ii0 equipment, and software. 

System Hardware Overview 

4 distributed network (Fig 1.) has been selected to provide the 
computational power required to automate the GTA in an evolving 
research enwronment. 

The various processors used in rhe network are as follows: the 
Input-Output Cnntroilcr (IOC), the Operafor Interface (OPI). the 
Integmicd Control Proictrcr (ICP). and the ditir!‘~ia/ /n!el/i~~rlct~ 
Processor (Alp) The functions provided by these processors and 
their assoctnted software is described m the following sections. 
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Fig. 1. GTA control system architecture 

System Software Overview 

.?letwork 
Ethernet using the TCP/IP protocol has been chosen for the 

GTA control system network because tit 1s commercially avaIlable and 
is well supported by established standards. The function of this 
network is to provide a generalized communication path between the 
computers, workstations. and processors that compose the control 
system This Includes the development system and the data analysis 
systems. 

The IOC provides a direct interface to each accelerator 
subsystem. The standard IOC processor [2] is the Motorola 68020 
32-bit processor running in a Versa-Module European (VME) bus 
Software implemented on the 68020 will run on the successor (68030) 
at increased speeds. The IOC software architecture is shown in Fig. 
2. 
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Fig. 2. Software Architecture. 

VxWorks. The real-time operatmg system for the IOC IS 
VxWorks 131, It uses the VRTX real-time executive (from Ready 
Systems, Palo Alto. CA) as the kernel of the real-time operating 
system The VxWorks (from Wind River, Inc., Emeryville, C.4) 
development enwonment is currently networked with the SUN/Umx 
environment and will soon be networked with the VAXIVMS 
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environment. VxWorks and Unix work together to form a complete, 
hybrid environment VxWorks is used for running, testing, and 
debugging real-time applications, while Umx is used as a high-level 
software development system. VxWorks provides extensive 
networking facilities. symbolic debugging, a Unix cross-development 
package, I/O drivers, a C shell, and memory management. The 
VRTX kernel provides the usual features found in real-time operating 
systems: preemptive scheduling, fast context switching, fast intertask 
communications and synchronization, and fast interrupt response. 

eand Application programs are 
typically implemented in the IOC in one of two ways: C language 
programs or finite state programs. Each state program is an 
independent entity within an IOC. State programs are expressed in a 
special state notation language and are compiled by a state notation 
compiler (SNC) [4]. Currently, the state programs are automatically 
compiled Into C code. Although the state notation language provides 
building blocks for control, it is being enhanced to provide more 
sophisticated structure for effectively implementing complex control 
algorithms. Some of these enhancements are parametenzation, 
hierarchical structure to control algorithms, and modularization of 
state programs. 

All state programs are initiated and executed by a program 
known as the sequencer. The sequencer is capable of calling a C 
subroutine to provide local reduction of large groups of raw data. 
This is useful because it reduces the amount of data transfer required 
across the network. Like the other major software components of the 
IOC, the state notation compiler is written in a high-level language 
(C. YACC, and LEX) to be portable and therefore independent of a 
particular hardware implementation. 

Sequence programs will be written for GTA to implement 
automatic start-up and fault recovery, 

&t&&e. The GTA database is distributed in nature, with each 
IOC database containing all the necessary data for a particular 
subsystem. The database contains the information describing the 
current state of the subsystem and the control parameters to maintain 
that state. This information is available throughout the control 
network via a database access library, and sections of it (fields) can be 
changed over the network. 

A specral task, the Database Configuration Task (DCT) builds 
both the database and the process variable directory, which resides on 
disk for modification and report generation. Each IOC has its 
database loaded into memory at load time. The DCT. described 
below, allows the database to be modified interactively. 

The database is organized into records. Current record types are 
analog input, analog output, binary input, binary output, stepper 
motor, power supply, waveform, PID. and calculations. The smallest 
element in the database record is a field. Typical fields are process 
vartable name, descriptor, conversion information, alarm limits. 
current value, desired output (a control parameter). archiving 
information, and display formatting. 

The current state of the accelerator is changed by modifying the 
fields pertaining to alarm generation and the control parameters. 
These parameters are available to the sequencer task, the OPI, the 
AIP, and other control processors throughout the network via a 
library of access routines. For supervisory control, the operator can 
either change the outputs and monitor the effects or define the 
setpoint control parameters in the database and modify the setpoint to 
maintain a steady state. To achieve automation, the sequencer will 
need to assume the task of modifying the alarm and control 
parameters to change the state of the accelerator. 

All database software is written in C 

Reouest/Resoonsc. Two communications tasks provide 
external access to the IOC database. The Requesf Server accepts 
requests from the network on a predefined network port The 
requests fall into three classes: (1) read from the database, (2) write 
to the database, or (3) monitor a value in the database. The read and 
write requests may cause the corresponding input/output channel to 

be accessed. The monitor request allows external nodes to process 
inputs as events occur, rather than by polling. The Response Serwr 

returns the value or values to the requesting task. 

evlce purerS. The purpose of the GTA device driver modules 
is to provide higher level application tasks with a standard interface to 
the GTA system hardware. 

The analog input driver will read the current value of a 12- or 
16-bit analog input and store it at a location specified in the calling 
sequence. There are currently three types of analog input cards and a 
number of different uses for each type: VMIC-3100 (12 bit), 
VMIC-311616 (16 bit), and XYCOM-566 (12 bit gated). 

The analog output driver will read/write values from/to 12- or 
16-bit analog output cards. In both cases the driver will store the 
value read/written at the location specified in the call. There are 
currently two types of commercial analog output cards and an external 
bus I/O module that looks like an analog output to the GTA system 
software: VMIC-4100 (12 bit) and VMIC-4116 (16 bit). 

The binary inpur driver will read the current value of a 32- 
channel binary input module and store that value at a location 
specified in the calling sequence. There are currently two types of 
binary input cards: Burr-Brown-910 and Xycom-210. 

The binary ourpur driver ~11 read/write a specified value from/to 
a 32-channel binary output module. In either case, it will store the 
current value of the module ANDed with a specified mask at a 
location given in the calling sequence. There are currently two types 
of binary output cards: Burr-Brown-902 and Xycom-220. 

The GPIB driver handles low-level interactions with the National 
Instruments GPIB-1014 interface. For the most part, this driver 1s 
supplied by National and is similar to a standard UNIX device driver. 
The device is opened, closed, read, written, and supports the notion 
of iocri. The ioctl is a utility that is responsible for device specific 
operations such as setting an instrument on line, sending an interface 
clear, and conducting a serial poll. It IS anticipated that we will 
develop some type of GPIB manager to free application processes 
from the need to arbitrate bus use among the mstruments attached to 
a given GPIB. 

The serial interface derrce driver allows for controllmg 
communication with external devices through a Xycom 42811 
mterface module. An example of such an external device is the 
Omega Engineermg Programmable Temperature Controller used by 
the RF subsystem. It is not intended that this device be used as a 
terminal interface, nor is the driver designed to handle terminal IiO. 

The stepper mofor interface device driver allows for controlling a 
Compumotor 1830 motor indexer. This indexer provrdes 
sophisticated motion control of positioners, slug tuners, diagnostics, 
and many other accelerator devices 

The waveform digitizer drrver will handle all low-level functions 
associated with a CAMAC LeCroy 8837 transient recorder. or any 
similar model. 

The Operator Interface (OPI) is a network device uttlizrng a 
graphic windowing system. It may be located at any point on the 
facility network and maintain full functionality. The user has the 
ability to generate and alter control displays and have access to the 
database and sequencer. The present OPI hardware is a VaxStatron 
II/GPX running the VMS operating system using the UIS window 
manager. 

The next OPI efforts include adopting an open standard 
windowing system. The utilization of a standard will remove 
dependencies on specific vendor hardware and software. Two 
systems are currently being studied: X Windows from MIT ]5] and 
the Network/extensible Window System (NeWS) [6] from Sun 
Microsystems. Also under consideration is a VME-based OPI. 

There are three control system configuration tools under 
development: a graphics editor (to build control displays), a database 



configuration task (DCT), and a state program editor The 
development path for these tasks is to integrate them under the 
selected standard windowing system, with a common 
mterfacelresponse design and with facilities to allow moving from one 
to the other easily. 

tcs F&. The graphics editor [7] allows the user to 
create color control displays m an interactive manner. Conw-uction 
of displays is accomplished using a mouse in an OPI window The 
operator can automatically connect to database channels by selecting 
one of many primitives (shders. buttons, text updates, or graphs) and 
by giving the channel name 

Once a display has been created, it can be stored on disk as a 
metafile for later use or modification. This information includes 
display information such as screen location, channel information, and 
graphical information for items drawn (text, boxes, circles, etc.), 

The metaftle also includes static graphic items, such as labels, 
process display items, and process conrrol items The process display 
items include graphic and text representation of analog and binary 
data as well as plots, strip charts, waveform displays, and state 
program status These are implemented as areas of the screen that 
are periodically updated. A special display execution module later 
reproduces the “picture” and sets up communication between the 
display and the database so that the functions (monitoring, control, 
etc.) selected by the operator are carried out. 

Process control items currently include a variety of primitives to 
control binary and analog signals. Burrons control a binary output 
channel, read a corresponding input channel, and display the results 
They also monitor state programs which are waiting for the operator’s 
permission to proceed Sliders control an analog output channel, 
read corresponding input channel, and display the results. Slider 
banks prowde a grouping of sliders for control and monitoring of a 
group of analog channels as described above. 

e ConfiPuratlon. DCT [8] is another OPI task that 
creates and maintains the process databases and the process variable 
directory. DCT is used to configure the process database. It is an 
interactwe configuration tool, which currently runs on the SUN 
workstations. The configuration task supports database creatton, 
modificatron. report generation, and deletton. 

The process vartable directory is created and mamtamed by the 
DCT. It contains a directory of all the process variables in the control 
system and their IOC ID, record type, and record number. It is 
loaded into the OPI and the IOC at start-up time. During operation, 
the directory IS used by the display task in the OPI and the sequencer 
in the IOC to resolve database references to untque network 
addresses. 

wnce EdIta A configuration task to be implemented is one 
that allows the user to create state programs graphically These 
graphics, containing bubbles, labels, and arrows, would then be 
translated mto either state notanon language, C programs, or tables. 

AIP Sofm 

For the GTA. artificial intelligence wtll be an integral part of 
the control system. Currently. the design of AI procedures is 
proceeding along a parallel but independent path of the IOC 
development effort. The Initial interface to the AI resource wtll be a 
high-level network connectton to a separate AI processor. As thtr 
software development effort matures, the AI resource may be ported 
to an IOC-resident AI hardware coprocessor This processor would 
be from the same family as the standard IOC processmg device. 

Presen: AI work is betng carried out on a Symbohcs 3620 Lisp 
machine. The ABLE project prototype [9] was the first attempt to 
automate many of the tasks previously performed by accelerator 
physics experts The ABLE prototype was built to find only dtpole 
field errors in a beamline using beam trajectory data (beam position 
monitors) ABLE incorporates well-understood physical models to 
predict where error\ in the beamline mtght occur It is a coupled 
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expert system [lo] combining over 15 000 lines of FORTRAN 
simulation and optimization programs with a LISP knowledge base of 
rules. The prototype was tested on several beamlines at SLAC. It 
prowded useful information about the problem in nearly every case 
that was tested. 

This prototype has been incorporated into a package called the 
Generic Orbit and Lattice Debugger (GOLD) [ll], which is a 
FORTR4N program that can be easily incorporated into many 
different control systems. This program is able to find beam kick 
errors by analyzing beam centroid data. Beam kick errors are 
manifested by dipole field errors, quadrupole field errors, beam 
energy errors, beam entrance errors, and monttor errors. This 
program has been used to analyze data and locate beam kick errors at 
CERN. 

Expert systems are also being investigated for use in injector 
control. 

ICP s0lwar.g 

The Integrated Control Processor (ICP) is a computer that 
coordinates the activities of more than one IOC. IOCs are grouped 
functionally and associated with an ICP. Software residing on the ICP 
will be designed to coordinate the interaction of software components 
that are distributed among more than one IOC. The sequencer till be 
an important part of this integration. 

Conclusion 

The GTA control system provides an environment in which 
state-of-the-art accelerator automation can be developed. It 
provides flexibility and allows for growth where needed. 
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