
1163

GROUND TEST ACCELERATOR CONTROL SYSTEM SOFTWARE’

L. Burczyk, R. Dalesio, R. Dingier, J. Hill, J. A. Howell,+
D. Kerstiens, R. King, A. Kozubal, C. Little, V. Martz, R. Rothrock, J. Sutton

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

The CT.4 contra! system provides on envtronment in which the

automation oj a state-of-the-art accelerator can be developed. Ir

mc1kes use of com.mercialiy available computers, workstations.

computer ne:works, rndusrrini I10 equrpment. and software. This

system hns built-/n supervisory control (like most accelerntor control

systems), tools to support continuous control (Itke the process control

industry). and sequential control for automatic start-up and fault

recovery (like few other accelerator control systems).

Several software tools support these levels of control. a real-time

operating sys:em (VxWorks) with o real-time kernel (VRTX), CI

configurarion database. a sequencer, and a graphics editor. VxWorks

supports multitasking. fast context-switching, and preemptive

scheduling VxWorksiVRTX IS o network-based development

environment specificoUy designed IO work in partnership with the

UNIX O~~rQtin~ system A database provides the interface ;o the

accelerator components. It consists of a run time lrbrory and a

databose conJiguration and editing tool. A sequencer /nitrates and

controls the operation of ali sequence programs (expressed (IS state

programs). A graphics editor gives the user the ability to create color

graphic displnys showing the state of the machine in etther text or

graphics form.

Introduction

The control system for the Los Alamos Ground Test Accelerator
(GTA) is required to probide complete accelerator automation That
15. it must provide automatic start-up, opumization, sreadv state
running. and shut-down. A more complete description of the
automatIon lisues and the levels of control required 1s found in [11.
In support of these requirements. the control system is hems deslgned
wrth these goals m mmd:

(1) Prowde early support for testmg and commissioning GTA
subsystems. This 1s to allow the physicist use of controls in order to
check out components and to develop an early understanding of
accelerator subsystems.

(2) Provide support for automation experiments. Currently. the
maln emphasis is on rhe ion source and output optics automation.

(3) Provide a system that is flexible and extensible so that the
potentially difficult problems of building a completely automated and
optlmlzed accelerator can be solved.

The hardware and software components of the control system
make use of commercially available components: workstations,
networks, indurtrlal Ii0 equipment, and software.

System Hardware Overview

4 distributed network (Fig 1.) has been selected to provide the
computational power required to automate the GTA in an evolving
research enwronment.

The various processors used in rhe network are as follows: the
Input-Output Cnntroilcr (IOC), the Operafor Interface (OPI). the
Integmicd Control Proictrcr (ICP). and the ditir!‘~ia/ /n!el/i~~rlct~
Processor (Alp) The functions provided by these processors and
their assoctnted software is described m the following sections.

‘Work supported and funded hy the Department of nclc,,sc, iIS ,=,w,,~

Stralcglc Defense Command. ~ndcr Ihe aurp~ici of Ihc Dcparlmenl of Energy

t I’recen1rr

/nteQrated I I J I

Control
PrOC6?SSOrS ICP AIP OPI System

At Processors Gateway

Operator lntsrleces
Ethernet TCP-If

Network
I

hput-Output
COntrOllerS
!ioc’sJ

Ma/or Sottwsre
Components

Standard
Cable Assemblies

SigfX+t
CO,lditlon/nQ
Hardware

Subsystems

Fig. 1. GTA control system architecture

System Software Overview

.?letwork
Ethernet using the TCP/IP protocol has been chosen for the

GTA control system network because tit 1s commercially avaIlable and
is well supported by established standards. The function of this
network is to provide a generalized communication path between the
computers, workstations. and processors that compose the control
system This Includes the development system and the data analysis
systems.

The IOC provides a direct interface to each accelerator
subsystem. The standard IOC processor [2] is the Motorola 68020
32-bit processor running in a Versa-Module European (VME) bus
Software implemented on the 68020 will run on the successor (68030)
at increased speeds. The IOC software architecture is shown in Fig.
2.

Oerator Interface, Integrated Control or A

Database Access

Run-time Database

I/O Drivers

VME and CAMAC

VxWorks

VRTX

Fig. 2. Software Architecture.

VxWorks. The real-time operatmg system for the IOC IS
VxWorks 131, It uses the VRTX real-time executive (from Ready
Systems, Palo Alto. CA) as the kernel of the real-time operating
system The VxWorks (from Wind River, Inc., Emeryville, C.4)
development enwonment is currently networked with the SUN/Umx
environment and will soon be networked with the VAXIVMS

1164

environment. VxWorks and Unix work together to form a complete,
hybrid environment VxWorks is used for running, testing, and
debugging real-time applications, while Umx is used as a high-level
software development system. VxWorks provides extensive
networking facilities. symbolic debugging, a Unix cross-development
package, I/O drivers, a C shell, and memory management. The
VRTX kernel provides the usual features found in real-time operating
systems: preemptive scheduling, fast context switching, fast intertask
communications and synchronization, and fast interrupt response.

eand Application programs are
typically implemented in the IOC in one of two ways: C language
programs or finite state programs. Each state program is an
independent entity within an IOC. State programs are expressed in a
special state notation language and are compiled by a state notation
compiler (SNC) [4]. Currently, the state programs are automatically
compiled Into C code. Although the state notation language provides
building blocks for control, it is being enhanced to provide more
sophisticated structure for effectively implementing complex control
algorithms. Some of these enhancements are parametenzation,
hierarchical structure to control algorithms, and modularization of
state programs.

All state programs are initiated and executed by a program
known as the sequencer. The sequencer is capable of calling a C
subroutine to provide local reduction of large groups of raw data.
This is useful because it reduces the amount of data transfer required
across the network. Like the other major software components of the
IOC, the state notation compiler is written in a high-level language
(C. YACC, and LEX) to be portable and therefore independent of a
particular hardware implementation.

Sequence programs will be written for GTA to implement
automatic start-up and fault recovery,

&t&&e. The GTA database is distributed in nature, with each
IOC database containing all the necessary data for a particular
subsystem. The database contains the information describing the
current state of the subsystem and the control parameters to maintain
that state. This information is available throughout the control
network via a database access library, and sections of it (fields) can be
changed over the network.

A specral task, the Database Configuration Task (DCT) builds
both the database and the process variable directory, which resides on
disk for modification and report generation. Each IOC has its
database loaded into memory at load time. The DCT. described
below, allows the database to be modified interactively.

The database is organized into records. Current record types are
analog input, analog output, binary input, binary output, stepper
motor, power supply, waveform, PID. and calculations. The smallest
element in the database record is a field. Typical fields are process
vartable name, descriptor, conversion information, alarm limits.
current value, desired output (a control parameter). archiving
information, and display formatting.

The current state of the accelerator is changed by modifying the
fields pertaining to alarm generation and the control parameters.
These parameters are available to the sequencer task, the OPI, the
AIP, and other control processors throughout the network via a
library of access routines. For supervisory control, the operator can
either change the outputs and monitor the effects or define the
setpoint control parameters in the database and modify the setpoint to
maintain a steady state. To achieve automation, the sequencer will
need to assume the task of modifying the alarm and control
parameters to change the state of the accelerator.

All database software is written in C

Reouest/Resoonsc. Two communications tasks provide
external access to the IOC database. The Requesf Server accepts
requests from the network on a predefined network port The
requests fall into three classes: (1) read from the database, (2) write
to the database, or (3) monitor a value in the database. The read and
write requests may cause the corresponding input/output channel to

be accessed. The monitor request allows external nodes to process
inputs as events occur, rather than by polling. The Response Serwr

returns the value or values to the requesting task.

evlce purerS. The purpose of the GTA device driver modules
is to provide higher level application tasks with a standard interface to
the GTA system hardware.

The analog input driver will read the current value of a 12- or
16-bit analog input and store it at a location specified in the calling
sequence. There are currently three types of analog input cards and a
number of different uses for each type: VMIC-3100 (12 bit),
VMIC-311616 (16 bit), and XYCOM-566 (12 bit gated).

The analog output driver will read/write values from/to 12- or
16-bit analog output cards. In both cases the driver will store the
value read/written at the location specified in the call. There are
currently two types of commercial analog output cards and an external
bus I/O module that looks like an analog output to the GTA system
software: VMIC-4100 (12 bit) and VMIC-4116 (16 bit).

The binary inpur driver will read the current value of a 32-
channel binary input module and store that value at a location
specified in the calling sequence. There are currently two types of
binary input cards: Burr-Brown-910 and Xycom-210.

The binary ourpur driver ~11 read/write a specified value from/to
a 32-channel binary output module. In either case, it will store the
current value of the module ANDed with a specified mask at a
location given in the calling sequence. There are currently two types
of binary output cards: Burr-Brown-902 and Xycom-220.

The GPIB driver handles low-level interactions with the National
Instruments GPIB-1014 interface. For the most part, this driver 1s
supplied by National and is similar to a standard UNIX device driver.
The device is opened, closed, read, written, and supports the notion
of iocri. The ioctl is a utility that is responsible for device specific
operations such as setting an instrument on line, sending an interface
clear, and conducting a serial poll. It IS anticipated that we will
develop some type of GPIB manager to free application processes
from the need to arbitrate bus use among the mstruments attached to
a given GPIB.

The serial interface derrce driver allows for controllmg
communication with external devices through a Xycom 42811
mterface module. An example of such an external device is the
Omega Engineermg Programmable Temperature Controller used by
the RF subsystem. It is not intended that this device be used as a
terminal interface, nor is the driver designed to handle terminal IiO.

The stepper mofor interface device driver allows for controlling a
Compumotor 1830 motor indexer. This indexer provrdes
sophisticated motion control of positioners, slug tuners, diagnostics,
and many other accelerator devices

The waveform digitizer drrver will handle all low-level functions
associated with a CAMAC LeCroy 8837 transient recorder. or any
similar model.

The Operator Interface (OPI) is a network device uttlizrng a
graphic windowing system. It may be located at any point on the
facility network and maintain full functionality. The user has the
ability to generate and alter control displays and have access to the
database and sequencer. The present OPI hardware is a VaxStatron
II/GPX running the VMS operating system using the UIS window
manager.

The next OPI efforts include adopting an open standard
windowing system. The utilization of a standard will remove
dependencies on specific vendor hardware and software. Two
systems are currently being studied: X Windows from MIT]5] and
the Network/extensible Window System (NeWS) [6] from Sun
Microsystems. Also under consideration is a VME-based OPI.

There are three control system configuration tools under
development: a graphics editor (to build control displays), a database

configuration task (DCT), and a state program editor The
development path for these tasks is to integrate them under the
selected standard windowing system, with a common
mterfacelresponse design and with facilities to allow moving from one
to the other easily.

tcs F&. The graphics editor [7] allows the user to
create color control displays m an interactive manner. Conw-uction
of displays is accomplished using a mouse in an OPI window The
operator can automatically connect to database channels by selecting
one of many primitives (shders. buttons, text updates, or graphs) and
by giving the channel name

Once a display has been created, it can be stored on disk as a
metafile for later use or modification. This information includes
display information such as screen location, channel information, and
graphical information for items drawn (text, boxes, circles, etc.),

The metaftle also includes static graphic items, such as labels,
process display items, and process conrrol items The process display
items include graphic and text representation of analog and binary
data as well as plots, strip charts, waveform displays, and state
program status These are implemented as areas of the screen that
are periodically updated. A special display execution module later
reproduces the “picture” and sets up communication between the
display and the database so that the functions (monitoring, control,
etc.) selected by the operator are carried out.

Process control items currently include a variety of primitives to
control binary and analog signals. Burrons control a binary output
channel, read a corresponding input channel, and display the results
They also monitor state programs which are waiting for the operator’s
permission to proceed Sliders control an analog output channel,
read corresponding input channel, and display the results. Slider
banks prowde a grouping of sliders for control and monitoring of a
group of analog channels as described above.

e ConfiPuratlon. DCT [8] is another OPI task that
creates and maintains the process databases and the process variable
directory. DCT is used to configure the process database. It is an
interactwe configuration tool, which currently runs on the SUN
workstations. The configuration task supports database creatton,
modificatron. report generation, and deletton.

The process vartable directory is created and mamtamed by the
DCT. It contains a directory of all the process variables in the control
system and their IOC ID, record type, and record number. It is
loaded into the OPI and the IOC at start-up time. During operation,
the directory IS used by the display task in the OPI and the sequencer
in the IOC to resolve database references to untque network
addresses.

wnce EdIta A configuration task to be implemented is one
that allows the user to create state programs graphically These
graphics, containing bubbles, labels, and arrows, would then be
translated mto either state notanon language, C programs, or tables.

AIP Sofm

For the GTA. artificial intelligence wtll be an integral part of
the control system. Currently. the design of AI procedures is
proceeding along a parallel but independent path of the IOC
development effort. The Initial interface to the AI resource wtll be a
high-level network connectton to a separate AI processor. As thtr
software development effort matures, the AI resource may be ported
to an IOC-resident AI hardware coprocessor This processor would
be from the same family as the standard IOC processmg device.

Presen: AI work is betng carried out on a Symbohcs 3620 Lisp
machine. The ABLE project prototype [9] was the first attempt to
automate many of the tasks previously performed by accelerator
physics experts The ABLE prototype was built to find only dtpole
field errors in a beamline using beam trajectory data (beam position
monitors) ABLE incorporates well-understood physical models to
predict where error\ in the beamline mtght occur It is a coupled

1165

expert system [lo] combining over 15 000 lines of FORTRAN
simulation and optimization programs with a LISP knowledge base of
rules. The prototype was tested on several beamlines at SLAC. It
prowded useful information about the problem in nearly every case
that was tested.

This prototype has been incorporated into a package called the
Generic Orbit and Lattice Debugger (GOLD) [ll], which is a
FORTR4N program that can be easily incorporated into many
different control systems. This program is able to find beam kick
errors by analyzing beam centroid data. Beam kick errors are
manifested by dipole field errors, quadrupole field errors, beam
energy errors, beam entrance errors, and monttor errors. This
program has been used to analyze data and locate beam kick errors at
CERN.

Expert systems are also being investigated for use in injector
control.

ICP s0lwar.g

The Integrated Control Processor (ICP) is a computer that
coordinates the activities of more than one IOC. IOCs are grouped
functionally and associated with an ICP. Software residing on the ICP
will be designed to coordinate the interaction of software components
that are distributed among more than one IOC. The sequencer till be
an important part of this integration.

Conclusion

The GTA control system provides an environment in which
state-of-the-art accelerator automation can be developed. It
provides flexibility and allows for growth where needed.

References

[1) P. Clout, “Accelerator Control Systems and GTA.” Los Alamos
National Laboratory technical note AT-8:GTA:88-001, June
1988.

[2] L. Burczyk, J. Martinez, S. Mechels, “The Executives Guide for
the I/O Cluster (IOC) - Preliminary Hardware Design,” Los
Alamos National Laboratory technical note AT-8:IOC:88-001,
September 1986.

[3] .I. Fiddler, L. Kirby, and D. Wilner, “Distributed Systems Using
UNIX and VxWorks,” presented at the BUSCON West
Conference, Anaheim, CA, February 1988.

[4] A. Kozubal, “Guide to the State Notation Language,” Los
Alamos National Laboratory technical note AT-8:SYS:88-001,
April 1988.

[5] R. W. Scheifler and J. Gettys, “The X Window System.” m
Transactions, Vol. 5, pp. 79-109, April 1986.

[6] Sun Microsystems. Inc., “NeWS Technical Overview,” Part No.
800-1498-05, March 1987.

[7] V. Martz and R. Rothrock. “AT-Draw User’s Guide,” Los
Alamos National Laboratory technical note .4T-S:SYS:BS-002
February 1988.

[8] R. Dalesio, “Database Configuration Task - User’s Guide,” Los
Alamos National Laboratory technical note AT-8:SYS:88-003,
March 1988.

[9] S. Clearwater and M. Lee, “Prototype Development of a Beam
Line Expert System,” in Proceedinns of the 1987 Patti&
AcceleratorConference. Washington, DC, March 16-19, 1987,
IEEE Catalog No.87CH2387-9, p, 532.

(lo] L. Selig, “An Expert System Using Numerical Simulation and
Optimization to Find Particle Beam Line Errors,” Master’s
thesis, Stanford University, Knowledge Systems Laboratory
Report No. KSL 87-36, June 1987.

[111 M. Lee and S. Clear-water. “GOLD: Integration of Model-based
Control Systems with Artificial Intelligence and Workstations,”
presented at Workshop on Model-based Accelerator Controls,
Brookhaven National Laboratory, Upton, NY, August 16-18,
1987.

