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Abstract

In general, cyclotron inflectors strongly couple the two transverse
subspaces. This leads to a growth in emittance projections for a
beam with no initial correlation between the two transverse sub-
spaces. Only in the case of the Miiller (hyperboloid) inllector is there
no emittance growth. We have made calculations using an optimiza-
tion routine to match a given beam through the axial magnetic field
and inflector of a cyclotron axial injection systen:. We find that in
the limit where all the emittance is due to a beam’s axial angular
momentum (for example, from an ECR source), matching with no
emittance growth is possible even in the case of mirror or spiral inflec
tors. Moreover, any one of the two transverse emiltances circulating
in the cyclotron can be made smaller than the source emittance while
maintaining the sum of the emittances constant. This is achieved by
rotating the matching quadrupoles with respect to the inflector and
retuning.

Introduction

Various inflectors have been invented for injecting a beam through
an axial transport line and into a cyclotron. For a beam with no
initial correlation between the two transverse subspaces, the Miiler
(hyperboloid) inflector! is the best choice from the point of view of
optics alone. Spiral and mirror inflectors. however, each have their
own advantages® and so are often chosen despite the fact that they
worsen the beam emittance. A point which is often overlooked is that
not all types of sources have uncorrelated transverse subspaces. For
example, an axially symmetric source where charge exchange takes
place inside a solenoidal fleld will have an emittance (phase space
area =) in one transverse direction given by?

) 2 72 ‘
e = €5+ ;ﬁ;‘ . (1)

where € is the intrinsic emittance (due to ion temperature), r is the
beam radius at the solenoid exit and p, is the beam rigidity divided
by the sclenoid field. In this case, rig = —rag # O{ry, = 04,/ ,/F76]],
and o1 = 12, 014 = zy, etc.) and neglecting this fact leads to an
over-estimation of the emittance growth through the inflector.

We have investigated eyclotron matching in both extremes: namely

where (1) ¢; = €y, 794 = 793 = 0, and where {11) ¢y = 0, 1y = £1,
rog = T1 (the sign depends upon whether the source solenoid field
is parallel or antiparallel to the beam direction). Calculations were
performed using a computer code based upon TRANSOPTR.® Like
TRANSPORT, this code is based upon the G-dimcusional o-matrix
formalism, but in this application, TRANSOPTR has two advantages
over TRANSPORT. {1) The transport system is defined in a FOR-
TRAN subroutine. This allows much greater flexibility in defining
both the transport system and the fitting constraints. (2) TRAN-
SOPTR has the capability of using the infinitesimal transfer matrix
approach.® This was originally introduced to efficiently deal with the
3-dimensional space charge forces of bunched beams; in our applica
tion it allows one to treat optical elements, such as a varving axial
magnetic field and a spiral inflector, where it is not possible to write
down an analytic transfer matrix. The infinitesimal transfer matrix,
F (s). can be defined as (M - 1)/ds where M is the transter matrix
from s to s+ ds and ©is the identity matrix. The e-matrix elements

are calculated by numerically solving
do/ds = Fo — aF7

We have incorporated the varying axial feld cd the shaple
(unslanted electrodes, constant nagnetie fic'd s soival inflector into
TRANSOPTR. For these two cases F s,

0 1 0 6 0 0
0 0 K'/2 K 0 0
0 0 0 I 0 0 . e
K K N 00 0 (varying axial field)
0 0 0 0 0 1
0 0 0 0 0 0
0 I Ok 0 0 0
-SEK? 0 —SK/A 0 0 85K
N 0 0 1 0 0 Lo
CSKE/A 0 0 0 0 274 cspival inflector)
~-SK 0 ~1/4 0 0 1
~CK/A O 0 -1/4 00

where W' = 1/p, A is the inflector height, & sin (s/4), O =
cos (s/A4), s is the independent variable and is set to zero at the

inflector entrance. For the spiral inflector, the two transfer matrices

1 0 0 0 0 ¢ 1 d g 0 0 0
0 1 I 0 0 0 0 1 c 06 00
0 0 1 0 0 0 00 1 0 0 0
- 0 0 1 6 0 0 0 0 VRN VI
6 © 0 01 0 0 0 0 0 1P 0
¢ 0 ~-1/4 0 0 | 0 0 1/4 0 6 |

must be used at the entrance and exit respectively to transform to the
proper variables. The F matrices are derived from the well-known
equations of motion.? The mirror inflector has heen ineorparated into
TRANSOPTR using the transfer matrix of Ref. 6.

We have confined our attention to matching in the 1-ditensional
subspace (z,z’,y,y'). In this case it is convenient 1o describe the cy-
clotron as a dipole with a field index n = v2. This vields 1. = /T = 0.
Matching is achieved by varying the strengths and orientation of
quadrupoles placed before the entrance into the cyclotron’s axial mag:
netic field while trying to minimize 12, 734, 1, 2. g1, and ys. The lat-
ter 4 parameters are, respectively, harizontal bean sizes at locations
in the cyclotron separated by 90°/1, of azimuth and vertical beam
sizes at locations separated by 90°/1,. Minimization was performed
by the least-squares subroutine BCLSE from the IMSL library,

Circulating emittances in the cyclotron are caleulated from

3 )
Cr = VeI /P

{where rmax is the maximum beam size over ane betatron oscillation)
and similarly for ;. The reason for defining emittances in this way is
that in cyclotrons where turns are separated, hetatron phases always
become mixed and so the matched ellipse becomes filled.

Results

I our calculations we used an injected beam energy of 25 keV
and eyclotron parameters po= 149 o and o, D These vialoes
correspond, more or less, to the 30 MeV 117 eyclotron being de-
signed at TRIUMF.” Case I with ¢, = ¢y and no r

is summarized in Table 1. The source emittance is 30 mun-mrad or.

y correlations

normalized, is 0.365 min-mrad. Since the calculation is linear. how
ever, this emittance is simply a scaling parameter: only the ratio of
Both the mir-
ror and the spiral inflector are characterized by a paraneter A which

circulating emittance to source emittance is relevant

is the height of the entrance above the median plane. We note that
different inflectors require different values of 8: the angle between
the incoming beam (i.e.. the matching quadrupolesy and the inflector
clectrodes. Emittance growil is larges: for the mirrer inflortor and

for both Inflectors diminishes as inflector size decreasos.
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Table I. Normalized cyclotron emittances and quadrupole orientation for
optimum inflector matching with an uncorrelated input beam. Normalized
input emittances: €; = ¢, = 0.365 mm-mrad.

normalized quad
emittances orientation

Inflector height electric
type (A} field

(cm) (kV/cm) (mm-mrad)
radial vertical (9)
Spiral 1.0 50.0 0.47 0.47 -50°
2.0 25.0 0.68 0.63 -23°
3.0 16.7 0.77 0.81 0°
Mirror 1.0 36.2 0.93 0.84 25°
15 24.9 0.97 1.18 28°
2.0 19.6 1.37 1.47 30°

Case 1T, namely, where the emittance is due to the beam’s angular
momentum was simulated by allowing a divergenceless heam of radius
r to exit a solenoid with magnetic fleld B, such that

2
r _ (Bp)

7 = 50 mm-mrad , = —[r N

Results are summarized in Table IT and Fig. 1. For both the mirror
and the spiral inflector, the following conclusions can be drawn

1. It is possible to match to the cyclotron with no growth in the
sum of the transverse emittances.

2. It is possible to trade emittance in the cyclotron between the
radial and vertical directions while maintaining the sum of the
two ernittances at twice the input emittance. For example, for
the 2 em spiral inflector {Fig. 1), the vertical emittance can
be continuously varied between 8% and 150% of the source
emittance. In the case of the mirror inflector (Table 11}, the
emittances can be varied also, though not over as broad a range
as in the case of the spiral inflector.

3. Conclusions (1) and (2) remain true whether the source solenoid
is aligned parallel or anti-parallel to the cyclotron magnetic
field. However, the quadrupole tune is quite different for the
two cases. For the 1 em mirror inflector (Table II), emittance
can be swapped between the radial and vertical directions by
switching the direction of the source magnetic field.

Table II. Matched cyclotron emittances as a function of quadrupole orien-
tation angle (9) for the 1.0 cm mirror inflector with an input beam whose
emittance (0.365 mm-mrad normalized) is due solely to angular momentum.

Orientation of Normalized emittances

source solenoid (4 (mm-mrad)

w.r.t. cyclotron radial vertical

-40° 0.64 0.09

-19° 0.68 0.05

4° 0.64 0.09

26° 0.62 0.11

-5° 0.16 0.57

10° 0.15 0.58

30° 0.09 0.64

55° 0.16 0.57
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Fig. 1. Matched cyclotron emittances, ¢, and ¢,, as a function of
the orientation angle of the matching quadrupoles for the case of the
2.0 em spiral inflector with an input beam whose emittance, €;, is due
solely to angular momentum.

It must be emphasized that the 4-dimensional phase space vo.ume
is zero for the case summarized in Table Il and Fig. 1. Real solenoidal
sources will contain emittance contributions from both terms in for-
mula (1). Nevertheless, it is clear that neglecting the z — y correlation
will lead to an overestimation of the emittance growth which occurs
when injecting through other than a hyperboloid inflector. Moreover,
the {usually dominant) emittance contribution due to the source’s
solenoidal field can be traded between vertical and radial directions
in the cyclotron. This kind of flexibility is not possible with the
hyperboloid inflector and may have practical uses.
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