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ABSTRACT 

IIRMELI ii R romputer code to calrulatr the imprdancr of 
obstarlrs of arbitrary but cylindrically sm~n~rtrir shape with 
side tahrs mphnll~ thought for thr inlpcdancr catrdat~o~~ 
abovr rut-off ahrrr rxlsting rcwnator rodrs cannot br used. 
‘l‘hr n~,ner,c solution IS bawd on the PIT-method. it affords 
the solution of RII inhomo~tneous, ron~plrr matrix equation for 
a given frrqnmcy. A multigrid algorithm has been wt up to 
SOIVP thr linrrtr system. This special sol~cr is still in thr stage of 
devrlopmrnt but already giving rm~lts which are shown here. 

Some important aspects in the design of accelerating components are 
their influence on the beam and their own behaviour in the working 
machine. The calculation of the impedance, which describes the wake 
force in the frequency domain, and the evaluation of the wake poten- 
tial are equivalent ways of studying these questions. In this paper a 
numerical method will be presented to calculate the longitudinal im- 
pedance for a cylindrically symmetric structure, as e.g. a cavity with 
beam ports. 

CJavities as components of an accelerator have only a finite num- 
ber of resonant modes below the lowest cut-off frequency for travelling 
waves in the beam port. Above this cut-off frequency no ideal reso- 
name can exist since fields may travel out of the cavity. Nevertheless 
so-called quasi resonances may build up. Above cut-off the non-zero 
values of the impedance form a continuous spectrum. A peak in this 

spectrum can be considered a resonance. 
There are a number of computer codes to evaluate the lowest re- 

sonant frequencies and quality factors for cavities needed for thp im- 
pedance calculation below cut-off, e.g. jl]. [z]. Recently Glurkstem 
and Ncri adapted the resonator code SITPERFISII [3] for impedance 
calculations above cut-off [4]. The program TrRMEL-I calculates the 
impedance as a function of frequency (including the region above cut- 
off). For this calculation the cavity is excited with a beam current 
equal to the Fourier transform of a point charge traversing t,he struc- 
ture. Solving Maxwell’s equations for the fields yields the electric field 
and thus by integration the impedance. 

DEFINITION OF THE IMPEDANCE --.______-- .__-- 

The current density of a point charge on the axis of a cylindrically 
symmetric structure equals: 

;(T,AL r) r p(P,q,“,t).c: Qtd(r)6(; - l!t)c;, 

with Q= charge and v - speed of the point charge. 
The longitudinal impedance of a structure is then given by: 

Z(d) = ; Jew 8,( P : 0, ‘F. 2.u) e+‘1’)2 dz, 
72 

(1) 

(2) 

where Ez is the Fourier transform of the longitudinal electric field E,. 
(;5] gives more details.) So far only relativistic particles are considered. 
i.e. D = c. 

In [6] it is shown that the integral can he taken at any radius r for a 
cylindrically symmetric structure. Thus the integral can also be taken 
at the tube radius whrrcb the integrand vanishes in the tube region. 
Consequently the evaluation of the integral only over the gap of the 
cavity yields the impedance 

>mER!_C‘AL.s’Q&W J,411mQN 01 THE PROBLEM 

To calculatr the irnp~danc~ Maxwrll ‘c equations have to he dicrrpfi- 
zed. Here finite diffr~rrnr<~s, in particular thr FIT method 171. arc used 
for the dIscr<btization. An rxt~~nsion of this method was adnptt~d in 

connection with the solution Iof t hP discretired rquat ions. Since oni> 
the cavity region and neighboring parts of the (infinitely long) beam 
ports is ent rrcd as gwtlnet r) an “~q)en” boundary ronrlit ion was intros 
dnred. 

Maxwell’s Equations for t h? prol)lrn~ 

Maxwell‘s equations for tlrr problenl read a’i : 
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where a.4 stands for the boundary of area .4 and 2’ and fl’ are norma- 
lized complex phasors (compare 151). At present only monopole fields 
are treated (a/?$ = 0). 

Since the structure is excited by a beam current with frequency u, 
the fields are composed of an inhomogeneous part that is caused by 
the current and the homogeneous part. Therefore H’ can be written 
as H’ : H; + Hz with 

with the wavenumber k = W/C and the phase kzo. 

The open boundary condition 

For a frequency above the lowest cut-off frequency of tile beam port 
the excited wake fields can propagate in the tub? with propagation 
constant k’ (compare figure 1). 

-- 
I,,,e-iKZ- 

Figure 1: Longitudinal dependanre of exciting current and magnetic 
field components. 

For the numerical calculation the beam ports have to be cut at 
some convenient distance from the cavity. At these boundaries the 
reality of an open beam port has to be simulated. 
From ( 5) it follows for Hi 

H;(w,r, z A) = H;(w,r,i)f liA -1(1 + ikA)H;(d,r,r) (6) 

For ~hr hclltl~>gmrour al!jllut It;11 nlagn~tir field the rrlation 

H$(d,7..-‘ A)’ (1 ik’.l] q.2. 7’. ;) (If If>< ic ft (7 

If$(d.T.. 13) II Ik’A: q![*. P. :) a! t/r<, 7ighf (h 

is valid. k’ is ~xactl> evaluat c&t1 ill tht, firquenc\ range just abovr~ cut 

off wherr only OTK~ type of wav<’ can propagal t’, otherwise k’ k i 
taken as ;il~l,r~~xilnatioll. 
These first order Pquations arta u~d to spt up t III, differ~~nrt~ squat ion 
for grid point i at the right and left boundary (compare ligurc, 2). 
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% .__ _____ (1 + ikA)H;, 
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-- l-.I..I.-I-.-.~ 
Figure 2: Use of the open boundary condition at the grid boundary in 
the tube to the right side of the cavity. 

Discretization ~.~_... 

Maxwell’s equations are discretized with the FIT-method for a rectar- 
gular grid. This implies many analogies with IJRMEL [I]. 

The difference equation for Hz is deduced from ( 4) while the 
discretization of equation ( 3j gives the ones for E, and E, (compare 
[l]). For the equations for E, at the left and right boundary of the 
grid the open boundary simulation is used (compare ( 6), ( 7) and 
( 8)). The difference equations for i?, use for P 0 the relation 
rH;(r~. T. 2) T (r -- A)H;(u, P - A. I ) which holds because of ( 5); on 
the axis (r ~ 0) the current does not vanish hut can be expressed in 
terms of H,J. 

In the difference equation for Hs the other components are replaced 
by their difference equations. This yields a system of linear equations 
with the homogeneous azimuthal field rornponent~ as unknowns and 
the inhomogeneous onrc on thr right hand sides. 

Extension of the FIT-method ~-~~__ 

In context with the solution method for the linear equations system 
an extension of the FIT-method was introduced: 
A grid cell niay now be partially filled with metal in any way as e.g. in 
figure 3. The FIT-method uses the area of a grid cell and the lengths 
of the sides. VVhrn a cell is partially filled with metal only the area 
of the remaining vacuum and the lengths of the sides not bordering 
metal are used. 

vacuum 

Figure 3: Partially filled grid cells. 

SOLIJTIQN OF THE NUMERICAL PROBLEM 

Discretization of hlaxwell’s equation< leads to a complex linear system 
of equations 

Lh = b (91 

with L = A + ib’D -- k*I and b = b’h’. 
L is a (N x N)-matrix. The solution vector h holds the homogeneous 
azimuthal magnetic field components (Hz,, .,., H$). The matrices A, 

D and I (unit matrix) are purely real. A equals the matrix of URMEL 
[I] for the rnonopolc case. D is a diagonal matrix expressing the open 
boundary condition. On the right hand side h’ equals (H;,, . . ..H.,). 

With A the matrix L has a band structure with only four off- 
diagonals. A can be made symmetric as is explained in [l] but L is 
non hermitian and not even positive definite. Near (quasi-)resonances 
L even becomes nearly singular. At resonances below cut-off L is 
exactly singular. Because of round-off errors this is true also near 
these resonances. 

Multigrid algorithm as solver for the linear system 

The linear system in question has a large, sparse, indefinite and non- 
hermitian matrix. Therefore it should be treated by a fast iterative 
solution method. A multigrid algorithm has been developed and is 
presented here. 

Multigrid methods [8] have shown a big success in the fast solution 
of partial differential equations. For some problems they are several 
orders of magnitude faster than other known methods. The main idea 
of the multigrid methods lies in the combination of an iteration method 
I, which smoothes the high frequency parts of the error in a few steps, 
with another iteration II, that reduces the low frequency parts in 
the error. I is just a classical iteration method like the Gauss-Seidel 
method. One iteration step of II consists of a correction evaluated on 
a coarser grid. Even though II is not convergent the combination of 
I and I I converges very fast. 

In URMEL-I a so called Full-Multi-Grid-Method (FMG) with V- 
cycles is used. A V-cycle is a special kind of a single iteration step 
of II. Figure 5 shows schematically on two grids how this works. In 
practice at least three grids are usually taken (compare figure 4). 

grid 1 0 0 
r-- ---~- .I 

0 0 

Figure 4: FMG.method with three grids and two V-cycles on each 
grid. Grid 1 is the coarsest grid. 
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Figure 5: FMG-method on two grids. 

The roaracr grids are given by every second grid line of the grid on 
the next higher level: i.e. h,,,,, = 2h,,nc for regular grids. 
On each grid level the mafrir Li has to be set. In this process it is very 
important to solve the same physical problem, i.e. to treat the same 
gronletry, Therefore the rx~rn~ion oft he usual set up of FIT-equation5 
on a rectangular grid, which is desrrihrd above, was introduced. 
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The solution on fhe coarsest grid is done by LU-factorization with a 
LINPACK-routine ,9]. 
As grid transfer either bilinear interpolation to a finer grid or corre- 
sponding restrirtion to a coarser grid is chosen. 
As r&ration method the Gauss-Seidel method is taken as long as a 

V-cycle reduces the 11. /r-Norm of the residuum. From then on the 
Kaczmarz method jl0: is used. 
The number of I’-cycles has not been fixed a priori but is set by a 

convergence criterium. Also the numbc-r of rcIarniion su,crps depends 
on a convergence criterium. 

At the actual status of IJRMEL-I details of the algorithm have 
to be improved to get a better performance. Problems with this are 
caused e.g. by the near-singularity close to quasi-resonances, by the 
interpolation error at corners in the boundary and by the frequency 
dependance of the problem, which affords finer grids with increasing 
frequency. 

In conclusion it can be said that the results are not yet satisfying, 
especially in their accuracy, but already show a reasonable agreement 
with analytical results and results obtained from wakepotential calcu- 
lations with TBCI 161. 

EXAMPLE 

As example a pillbox with 65 mm gap, 100 mm radius and 50 mm 
tube radius is chosen here, compare figure 6. 

-. 

Figure 6: Pillbor cavity taken as example. 

In the frequency range where a big stepsize is possible, i.e. N is 
relatively small, the results from LU-factorization could be compared 
with results from the MG-algorithm. Figure 7 shows the impedance 
calculated with the LU-factorization as solver for AZ = 4.06 mm, 8.12 
mm and 16.25 mm giving 640, 160 respectively 40 vacuum cells. It can 

be seen that the discretization induces a compression of the impedance 
curve in the frequency direction. Figure @ shows the curve of a MG- 
solution on two grids in comparision with the coarse grid solution and 
the LU-solution on the fine grid. Besides the areas with convergence 
difficulties as mentioned above the MG- and LU-solution are identical 
proving the quality of the MG-algorithm in general. 

Z/Ohm 

150.0 

100.0 

AZ =16.25 mm 

A: =8.12 mm 

Az -4.06 mm 

5;:; 1 ~~:~~=~-~,~~~ 
25w.o 5000.0 f/MHZ 

Figure 7: Real part of the impedance above cut-off (= 2295 MHz) 
calculated by URMEL-I with direct solution method and stepsizes 
AZ =4.06, 8.12, 16.25 mm and impedance by analytical solution with 
Her&e’s code. 

For pillboxes with side tubes the impedance can be analytically 
calculated by Fourier series. H.Henke [ll] used this to compute nu- 
merically the impedance for pillboxes. Henke’s method was taken for 
comparisons showing a reasonable agreement as can be seen in figure 
9. 
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Figure 8: Comparision of real part of the impedance by direct solutior 
on grid with AZ = 8.12 mm and by 2grid-MG-solution respectively 
direct solution on grid with A; = 4.06 mm (cut-off = 2295 MHz). 
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Figure 9: Real part of the impedance above cut-off (= 2295 MHz) 
computed by URMEL-I and by Henke’s code. 

SUMMARY 

The code URMEL-1 presents a new tool to calculate the impedance of 
obstacles of arbitrary but cylindrically symmetric shape with side tu- 
bes. The preliminary version gives gives reasonable results, indicating 
the validity of the method. 
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