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Introduction

The study of nonlinear effects due to the multipole er-
rors of the superconducting magnets, is a crucial issue for
the design of the hadron accelerators of the next genera-
tion. The standard method based on tracking program is usu-
ally limited by the computing time avaliable. In general
the numerical simulation is performed over a few hundred
turns, thus the dynamical parameters related to the non-
linearities such as the tune shift with the amplitude or the
smear of the Courant-Snyder invariant, can be computed with
a moderate accuracy.

A new approach based on Birkhoff normal forms was recently
proposed in order to speed-up the simulation of the non-
linear motion both in LHC!l and in SSC/?l. In this note we
shortly summarize the main properties of the normal forms
and we describe the code which allows to compute them by us-
ing algorithmic manipulations of polynomials. Some numer-
ical results are presented, relative to the two dimensional
motion in a quite realistic model of the LHC. A comparison
with the results of a different tracking code is discussed.
The future perspectives of the normal forms approach are

analized.

Normal forms approach

The betatronic motion of a test particle in a given sec-
tion of a particle accelerator can be described by a sym-
plectic map M,obtained by composing the transfer maps of
all magnetic elements. It is well known that each transfer
map can be approximated by a polynomial, whose order N is
not less than the higest multipole error taken into account.
If we compose sequentially the transfer maps truncating
them each time at order N, we obtain the order N polynomnial
expansion My of the superperiod map. In the Floquet coor-
dinates My reads:

N
My(2) = R(27)(2+ 3 Ma(5))  #eR* (1-1)

n>2

where R(2x7) is the direct product of two rotations in the
phase planes (z,p,),(z,p,). 5 are the linear tunes of the ma-
chine and M, are homogeneus polynomial maps of order n. The
map My is a truncation of a symplectic map, and cannot be
used for tracking.

If the linear tunes v are non resonant, the Birkhoff the-
orem allows to construct a polynomial transformation & of
order N which brings the map My into a symplectic map N ac-
cording to the equation:

P oMyo®=N+Ey En=O(XINt) (1-2)
The non linear map N is a Birkhoff normal form and can be
written as:

X' = R(G(RY, R) X (1-3)
where R = X?®+ P} RY = Z% + P}. The extension of the
Birkhoff theorem beyond the two dimensional case, was re-
cently achieved using the generating function'®l
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The tuneshift with amplitude and the smear are computed
as follows: we choose an initial condition in the Floquet
space and we compute the new coordinates (X, Px,Z, P;) and the
invariants Ry, Rz by using the transformation ¢. Then by a
simple polynomial evaluation we obtain:

G(RY R3)
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2
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The smear depends on the section of the machine we are con-
sidering (just as the S function ). A convenient definition

of it is: N
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Namely is the mean square value of r? = z% + p? and r? = 2% + p?.
The 1limits of the method at the present stage are the fol-

lowing:

i} the dynamic aperture defined as the boundary of the at-
tractor basin of infinity, can only be roughly estimated
from the behaviour of the series defining the transforma-
tion ®;

ii) in the vicinity of a resonance of order k, the Birkhoff
can be used up to the order & only; higher order approx-
imation are possible by using the resonant normal form
whose development is in progress;

iii) the quality of the approximation can be evaluated only
numerically: an analytical approach, not yet achieved,
will allow rigorous estimates of the lifetime of the cir-
culating intensity of particles.

Description of the code

The main advantage of our method is the possibility of
using an algorithmic approach to polynomial algebra. We
have developed programs!4l which perfom very efficiently

all the algebraic operations on polynomials (multiplica-
tion, power, composition, inversion...} including the com-
putation of any polynomial function (exponential, loga-
rithms..). The flow of the program is described in the fol-
lowing flowchart:
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The INPUT routine for the magnetic data is not in standard
form'®!; the MAGEL section computes the transfer maps of a
single magnets in the kick approximation and write them on a
file MAGNET.DAT. The program TRANSMAP concatenates the mag-
netic elements of the lattice and writes on a file BIRKH.DAT
the coefficients of the superperiod map (the Floquet coor-
dinates are used in a complex form: w, = z +1ip,,w, = z +1tp;) .
The main program BIRKH!®! computes the normal form trans-
formation functions &, ¥ = & ! and the phase advances a
and write them on the files PHI.DAT,PSI.DAT and OMEGA.DAT.
The program ERRORS computes the truncation error Ey given
by eq.(1-3) allowing to check that its elements of order
less or equal to ¥ are zero within the machine accuracy, and
gives other internal consistency checkes for the Birkhof?t
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seriea. The program TUNESME computes the tuneshift and the
amear according to our definition eq.(1-4),(1-5).

The internal structure of BIRKH is described in the sec-
ond flowchart:

PHLDAT
OMEGA.DAT PSIDAT

The file GENER .DAT contains the coefficients of the gen-
erating function of the transformation ¢ which is computed
together with its inverse ¥ by GENPHI that solves a system
of implicit equations. All the variables used in the pro-
gran are in double precision (8 bytes for each real vari-
able) . The present release of the code is limited to four-
dimensional maps and can be used up to order 10. Reaching
higher orders depends on better managment of the memory and
on vectorizing the basic algoritms. Up to order 8 the pro-
gram has been interactively used on a 8600 VAX at CERN. A
one dimensional version of the program was already writ-
ten |7l and the current calculations were carried out at or-
der 15 interactively on a 8600 VAX but higher order could
be easily reached!!l. The extension of the program to a six-
dimensional case does not present any further difficulty.

LHC model

We have considered a model for the LHC with a four-fold
periodicity of the lattice. The superperiod congists of an
arc,a low g insertion with 8° = 0.5m, another arc and a high
p insertion with 8* = 40m. Each arc contains 24 + % stan-
dard FODO cells. Magnetic imperfections are considered to

be present only in the superconducting dipoles. Their am-
plitude is identical in each dipole (systematic effect) and
is represented by one kick approximation located in the mid-
dle of the magnet. The multipoles expressions of the imper-
fections are the following:[®

B ir 3 N Irr .
e = -24x107%m % =—  =.0lm”

Bos Bqop
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The chromatic corrections are computed by means of an aux-
iliary program. Our reference section is at the beginning
of a defocusing quadrupole in a FODO. The basic parameters
of our LHC model are given in 19]; the tunes are respectively
Q. = 69.20,Q, = 69.12,

The numerical results obtained by a direct iteration for
few superperiods ot My and the normal form ® ok o &' with
N = 8, are compared with those of an independent track-
ing code (FASTRAC)!'%; we report the relative errors for two
gets of initial values (in cm!/?) in Floquet space:

In. val. Iter. Trunc. map Norm. form
z=2z=.03 1 53 %1077 8.4 x 10~°
pr=ps =0 10 87 x 1078 3.8 x 1078
z=2z=.08 1 41x 1078 2.7x 1073
Pz =Dy =0 10 1.5 x 1074 8x107*

We remark that the error of the truncated map grows linearly

as we iterate the map both in the angular and radial coordi-

nates because of the non symplectic character of My . Con-

versely the error in the orbit computed with the normal form

hae three sources:

i) the order N at which we have truncated the superperiod
transfer map M which gives an error proportional to N+
with r = max(r., r,);

ii) the transformation function ¢;

i1ii) the phase advance {1. The first error is rougly evaluated

for few turns of the machine. The second and the third er-
ror depends on the topology of the orbits and on the ef-
fects of the non-linear resonances. Anyway due to the
properties of the normal form, the error in the radial co-
ordinates depends very weakly on the number of iterations
(see {11,12]y
In table 2 we quote the !?-norm of ®¥): i.e. the contri-
bution at order N of the transformation &, which us pro-
posed to be used as a measure of the non linearity:

{*norm

87.89 x 1072
25.57

39.71

43.80 x 102
39.68 x 10°
74.52 x 10
62.29 x 104

Order

Ve =3 U W

The ratios V)W%%Jalﬂ of the i;-norme of the perturbative or-
ders of the transformation ¢ give a pseudo radius of conver-
gence r. & 0.08cm*/?, which is related to the closest low order
resonance. Inour case this is of the same order of magni-
tude of the dynamical aperture determined with FASTRAC (for
400 turns): .12¢cm™ % in the Floquet space.

In the figures we report, for the above model of LHC, the
smear and the tuneshift computed with the normal form of or-
der 8 for the following initial conditions in the Floquet
space: p; =p, = 0,0 < z < .1, z = z/10 for the horizontal
plane andp, = p, = 0, 0 < z < .1, z = z/10 for the vertical
plane.
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In the same figure we guote the corresponding values cal-
culated by FASTRAC with 400 turns.



We observe that there is an excellent agreement between
the tracking and the normal form for both the smear and the
tune shift. In any case by comparing the normal form at or-
ders 8, 7, 8 we conclude that the errors at order 8 are much
smaller than the errors affecting the tracking results.

Perspective

The method proposed is very efficient in computing the
tune shift with the amplitude and the smear of a supercon-
ducting hadron collider as the LHC, although its applica-
tion is presently limited to the non resonant working points
and to systematic field imperfections. With some effort
this method can be extended to include the evaluation of the
resonances effects, the stochastic variation of the mag-
netic imperfections, and the beam lifetime.

The theoretical framework for analyzing the almost (or
exact) resonant case already exists and numerical imple-
mentation will be easy. The analysis of a stochastic ma-
chine could be made by using anyway the normal forms, how-
ever we believe that a deeper theoretical understanding of
the stochastically perturbed maps, by extending some of the
ideas developed for the stochastic differential equations,
need to be reached in order to develop efficient and reli-
able computational tools. For the beam lifetime some rough
lower bound estimates can already be given at the present
stage since the error for one turn of the normal forms dynan-
ics behaves as:

)’L?‘

En = Ay (5:

where ¢, 18 about 5 - 1072 for our model. The beam lifetime
is thus of order 1/{y . Rigorous estimates could be given by
generalizing the a priori estizates on the error which lead
to the Nekhoroshev theorem!'®! for hamiltonian flows and the
exponential estimate for the long time diffusion.

[12] N.N. Nekhoroshev:
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The hardest problem still to be solved is the evaluation
of the dynamical aperture: the only way to do that should

be the analysis of unstable fixed points and manifolds. In
the twodimensional case the normal forms proove to be suc-
cesfull in computing the unstable manifold. There is a hope
that such results could be extended to high dimensienal case
allowing dynamical aperture to be obtained.
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