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INTRODUCTION 

We present a method for the numerical simulation of 
the interaction between high charged bunches and 
axi-symmetric fields inside a cylindrical 
structure (RF cavity or wave guide). A computer code 
named ITACA (Integration of Transients in 
Axi-symmetrical Cavities for Accelerators) has been 
written on the basis of the method presented here. 

ITACA is an electromagnetic particle-in cell code 
able to study both the radial and axial motion of a 
bunch of particles moving through a cavity, and the 
propagation of the wake-field excited by the bunch 
itself inside the cavity. The code can inject the 
particles of the bunch into the resonant field of the 
accelerating mode present inside the cavity, making 
possible to study the dynamics of the bunch in presence 
of all the relevant forces acting on it: the 
accelerating field, the space charge forces due to the 
self-field of the bunch and the wake-field excited by 
the interaction between the self-field of the bunch and 
the boundary condition imposed by the cavity surface. 

The computer code ITACA can handle, presently, 
axisymmetrical fields and bunches, allowing to study 
monopole wake fields and their effects on the 
particles. The code has been designed in order to 
represent with accuracy the behaviour of the fields and 
the dynamics of the particles: the first tests indicate 
that this goal has been reached. 

INTEGRATION OF TRANSIENTS AXI-SYMMETRICAL FIELDS 

It is well known that axisymmetrical fields in a 
cylindrical cavity can be expressed as functions of a 
scalar potential, which is given by Pih=r*H+ for fields 

which can be expanded in a sum of TM 
Ow 

modes (i.e. 

TM-like fields), and is given by Oe=r*E4 for fields 

which can be expanded in a sum of TE 
Ow 

modes (i.e. 
TE-like fields). 

Writing down the wave equations for axi-symmetrical E 
and E fields in a system of cylindrical coordinates, it 
can be seen at a glance that, in case of a cylindrical 
driving current, having only radial and axial 
components, the two set of fields (the TM-like, 
specified by HO, Er, Es and the TE-like, specified by 

$’ Hr, lir) are independent. tioreover, the driving 

current excites only the TM-like fields. Since a 
particle moving in a THOnp field experiences only a 

radial and an axial force (but no azimuthal one), it 
produces, inside a cavity, a driving current which can 
Couple only to TM-like fields. Then, the interaction 
between a bunch of particles and the field inside the 
cavity can be fully described solving the wave equation 
for the O=r*H+ potential, as a function of r,z,t, in 
presence of 
(Jr(r,s,t),JZ(r,z,~)) : 

driving current J(r,z,t) = 

1) 
p+&?&.~ ; 

L=&+&-tf 

together with the boundary condition a* - = 0 
on the cavity surface. an 

This typical hyperbolic equation gives, starting from 
some initial condition of the field distribution at 
t=o, the time evolution of the fields, provided that 
the driving current is a known function. 

To solve this equation we adopt the standard 
technique of the FDM, discretizing the fields over a 
regular rectangular mesh covering all the cavity 
section in the r-z plane. The numerical stability of 
this well established technique is assured if the time 
integration step (T=ct) is below a threshold given by 
[?I: 

where E and h are the mesh-steps in r,z respectively. 
A special treatment for curved boundary has been 

developed. At the location of all the mesh points close 
to the boundary, the field has been expanded in a 
Taylor series up to the II order- and the boundary 
condition has been imposed on the intersections between 
the mesh lines and the boundary. This procedure allows 
to handle all the special points near to the boundary 
with the same equation as for the normal ones, making 
possible to describe the field over a regular mesh 
with the same accuracy of an irregular one. The total 
amount of memory needed is reduced: in fact the gain in 
memory given by the regular mesh overcomes the lost due 
to the special boundary points handling. We think 
moreover that a regular mesh becomes recommended for 
short high charged bunches, because the field contains 
high order spatial harmonics (of wavelength comparable 
to the mesh step) which are excited by the bunch and 
propagate through the cavity. These harmonics, 
eventually excited in some point of an irregular mesh, 
couldn’t propagate through other regions of the mesh 
with larger discretization steps. 

The algorithm for the field integration has been 
tested starting the computation at t=O from the field 
distribution of the fundamental accelerating n-mode of 
the LEP SC cavities: during three RF periods (u-352 
MHz) of integration, the field distribution follows the 
harmonic evolution in time with a gr-eat accuracy, 
reproducing at the end of the third period the starting 
condition with a maximum error of a few parts per 
thousand (in the case of a mesh with 20000 points, i.e. 
a mesh step of 6 mm). Other tests have been performed 
against the two typical analitycal cases of the 
pill-box and of the spherical resonators, giving 
similar results with meshes having a few thousands of 
points. 

COUPLING THE PARTlCLES TO THE FIELD 

The driving current is produced by the bunch of 
particles which moves around the axis of the cavity. 
Since the driving current must be axi-symmetrical, the 
particles of the bunch are free to move only in the r-z 
plane, so that the current and charge densities 
associated to them are the same as the ones produced by 
rings of charge centered on-axis, free to move axially 
and to expand radially. In order to derive, from the 
distributions of both particles and their velocities, 
the current density distribution, we adopt the gaussian 
assignment algorithm 131, which treats the bunch as 
constituted by gaussian axi-symmetrical sub-bunches. 



Choosing a value for the gaussian width close to the 
mesh step, it can be seen that the unphysical 
fluctuations in the charge density (and in the current 
densitv) distribution, due to the assignment algoritmh, 
are ,iki te low (less than 1% 
distribution)[3]. This property of 
algorithm is very important, because 
of the driving current distribu 
unphysical spatial harmonic of the 
cause instability in the field integra t 

for a uniform 
the assignment 

each fluctuation 
ion excites an 
field and it can 
ion 14). 

THE CODE ITACA 

The computer code ITACA solves simultaneously the 
equation 1) for the field propagation, and the equation 
of motion for the particles. 

The electric field components are derived integrating 
versus the time one of the Maxwell equation, over a 
reduced mesh which covers the region around the axis 
where the bunch is expected to move. 
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Knowing the field H at each point of the mesh (both 
0 

at the present time and at the next integration time), 
this equation can be integrated with respect to the 
time with a standard R.K. procedure 

During the integration of the whole set of equations, 
the program monitors the energies stored in the bunch 
and in the e.m. field. The computation of the total 
e.m. field energy requires an integration of the 
Poynting vector flux across the cylindrical surface 
separating the reduced mesh (where both the E and the E 
fields are known) and the outer part of the cavity. 

The code is able to handle mesh with up to 200000 
points for the H+ field inside the cavity, requiring a 

core memory of about 3.5 Mbytes; the CPU time needed 
for the case presented in the next section (1000 
particles in the bunch traced over 2.5 m, 20000 mesh 
points) is about 6 hours of VAX-8600. The CPU time 
scales like T+(n+.OBN)fi where n is the number of 
particles and N is the Aumber of mesh points (the 
factor fi is due to the numerical stability criterium, 
which states that the integration time step must scale 
like the mesh step, i.e. like the inverse of fi). 

THE FIRST TESTS 

As a reference case, we chose a bunch of luC charge 
and 10 HeV energy injected in the empty LEP SC cavity. 
The bunch is initially gaussian in the r-z plane and 
semi-gaussian in the two phase spaces (gaussian in r 
and uniform in r’, gaussian in z and uniform in Or), 

with a normalized emittance of 4.10W4 m.rad and an 
initial radius (rms) of 20 mm. The bunch length at 
injection is 40 mm (rms). The wake-field excited in the 
cavity by the bunch passage, is shown in Fig.1 at some 
integration times. The excitation and propagation of 
the higher order modes is evident: the driving current, 
shown in Fig.2 at the same bunch position, is initially 
gaussian, but it exhibits an increasing splitting while 
the bunch approaches the last two cells, due to the 
strong effects of the induced wake-field. The splitted 
driving current starts to excite higher frequencies, 
which propagate more as in free space than in a cavity: 
these frequencies are at the limits of the mesh 
capability of propagating high order modes, but the 
numerical stability is not yet violated, as can be 
deduced from the fact that these modes propagate 
through the mesh and that the total energy (e.m. energy 
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Fig.1 - Motion of a 10 MeV 1uC electron-bunch and wake 
fields excitation in an initially empty LEP SC cavity. 
r*H 

0 
= const. lines are shown. 
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Fig.2 - Current density J as a function of z (at some 
indicated radii), produce8 by the bunch shown in Fig.1 
at the positions a,c,f. 



plus bunch energy) still stays constant until the bunch 
exits from the cavity. At this time the bunch has lost 
1.02 joule of its initially 10 joule ener-gy in the 
cavity: the computation of the e.m. field energy when 
the bunch has left the cavity gives .98 joules stored 
in the field, with an er-ror of a few percent in the 
energy exchange. 

The electric field on axis, shown in Fig.3, reflects 
evidently the wake associated to the bunch: a peak of 
the order of 10 MV/m propagates just behind the bunch, 
and a great fluctuation of the field inside the bunch 
induces the explosion of the particles off the axis 
while the bunch propagates in the cavity. 
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Fig.3 - Electric field on axis produced by the bunch 
shown in Fig.1 at the positions c and f. 

We present also the acceleration of a 1 MeV 100 nC 

bunch injected in the cavity (1.5*10e4 of normalized 
emittance), when a 115 joule of e.m. energy is stored 
inside (which corresponds to an accelerating field of 
-6.5 MV/m on the active length). In this case the 
accelerating field is much higher than the wake-field 
excited by the bunch, as can be seen from Fig.4, where 
the wake field is visible only at those phases of the 
accelerating field where the H ~ field is close to zero. 

Here it is important to note the reliability of the 
field integration algorithm, which after three RF 
periods reproduces the starting spatial distribution of 
the H ~ field with a great accuracy. The bunch is 

focused during the acceleration by the radial component 
of the electric field, but it emerges from the cavity 
with a large energy spread due both to the wake field 
excitation and to its large phase spread (about 40’ 
RF). In this case the driving current associated to the 
bunch stays fairly gaussian, with some distorsions, all 
over the acceleration process. The bunch exits from the 
cavity at an average energy of 11.12 MeV: the total 
energy, given by the sum of the e.m. energy and the 
bunch energy, remains constant near its initial value 
of 115.1 Joule with a maximum oscillation of .05 joule. 
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Fig.4 - Acceleration of a 1 MeV 1OOnC electron-bunch 
and wake fields excitation in a LEP SC cavity, 
initially stored with a resonating n-TMO10 mode. 
r*H o = const. lines are shown. 

The final energy gained by the bunch is 1.02 J, 
against an energy lost by the e.m. field of 1.07 J. The 

final normalized emittance of the bunch is 4.6.10 
-3 

m. rad . 

CONCLUSION 

This preliminary short paper presents a few results 
obtained in the days just before this conference, so 
that the time to properly analyze the outputs and to 
run different cases was lacking. Nevertheless, in our 
opinion, the two given examples should be sufficient to 
show the program performances, even if they are not 
useful for a real design. 

In the near future a more complete presentation of 
ITACA will be published, together with a description of 
the overall package (which includes a resonating modes 
finder and a graphic postprocessor). 

We assume that, once fully tested, ITACA will be 
ready for external users by the end of this year, in a 
version compatible for vector computation. 
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