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Abstract

Solutions Lo the equations of motion of a charged particle through the
fringing field of a bending magnet are represented by licst, second, and
third order transfer matrices. The case of the extended fringe field of

a dipole with a straight inclined boundary is considered.

1 Introduction

The optical effects of the field boundaries of a bending magnet have
been described Lo the second aorder for Lhe sharp cutofl approximation
[1] and to the first order for the extended fringe lields [2,8]. In the
third order, the sharp cutoff approximation produces infinities in the
matrix elements [7,9].

This paper outlines the procedure to obtain transfer matrices up to
the third order for the extended fringe field of a dipole. We consider the
case of a uniform field with straight inclined boundaries. The desired
mal rix elements are the caefficients in the Taylor expansion,

Xfmat 2_:/1’.,,,‘\',, | %:XT“""\"”‘” 2_:2:2':1/“,,“4,\',,.\'5‘\'4 doeee,
7

(1

where X is the usual TRANSPORT [3] 6-vector, X = (=, 2", y, ¥, {,8).
The matrices f£, T, U/ in (l) depend on the pole face rotation angle
Y+ and some form [actors. These form [actors are line integrals of
complicated {unctions of the field strength and its derivatives. To
make the integrals tractable, one can expand them in a power series

of ¢ = d/p, where pis the inside bending radius and d is a measure of
the Tringe field extent.

2 Transfer Matrix Calculation

2.1  Formulation

We consider the entrance of the bending magnet shown in Fig. 1.

The ellect of the fringe field of an inclined boundary is mathemati-
cally equivalent to the thin lens placed next to the magnel face normal
to the design trajectory |1,8l. The transfer matrix for such a lens is
given by a product of three transformations,

VLR VERY VIS VLN (2)
where

1. M Uis a transformation from the reference plane to the begin

ving of the fringe region through the pure drift field;
2. M" 2 is the transformation through the fringe region;

3. M? L is the transformation from the end of the lringe region back
to the reference plane through the pure bend field.

PPure drift and bend maps are well known to the third order [3]. We will
caleulate the non-trivial map M"*? here. The complete map M®*/
is found in 9]
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IFigure I: Midplane grometry. Reference planc is normal to the design tra

Jectory.

The approacliis as {ollows. Iirst, we calculate the transfer map ma-
trix elements [or the canonical set of the phase space variables [ollowing
Lie algebraic approach of [5]. "Then, we transforin to the TRANSPORT
variables obtaining the desired clements in (1). What remains is per-
forming matrix multiplication (2) and expanding the form factors in a

power series of ¢

2.2 Fringe Region Map

We would like e
We assume that

The geometry of the problem is shown in Fig. 2.
relate the eoordinates al s - s; with those at s - 5.
the magnetic field goes smoaothly from zero at sy to the constant value

By al s;.

design
trajectory

Iringe region at the entrance of a dipole.

IMignre 2:

The map MU "% has a unique Lie Algebraic factorization [1,5],
M = exp(c fo exp(s fa )exp(c fr 1), ()

where each [,(Z) is a homogenecous polynomial of degree nin 7, Z
z - z% z = (q1, P1y92, P2, 93, P3) i5 a generalized coordinate-momentum



6-veetor, and z¢ is the design trajectory. Lie Transformation ezp(: f :)
is defined in lerms of the Poisson bracket operator, [ f, |,

x)

cortef 0 3L el i gl

Polvanomials fo, fy, [ salisly the equations of motion given in |7}
They are delermined by the system’s Hamiltonian and the first order
matrix M given by exp(c fo2)8 - M7,

2.2.1 Fringe Region Hamiltonian

Hamiltonian for the fringe region with s as an independent variable

can be written as follows,

K= (e 8 (pea)® Pl (1)
wlhere b b
[ 3 4
a, b } s
! 2! 4 y
b /.b(s')de, by~ b by K6
i
and
L 3,(0,0,3
h(s) v( ’ )
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Now, we rewrile the Tamiltonian in terms of deviations from the
design trajectory.  We defline veclor x (z zhp, pdypeT
7. 8), where superseript d refers to the design coordinates. Since the
ltamiltunian does not explicitly depend on z, pt o const - sing. We
can write the full Hamiltonian to the 4% order,
b 2 ing - b bl,i b-",42 211/2
X It 2z 4 2g -~ (T2t siny - byt o 73 i 9 z3)% - 23] (8)
Deflining

g ~sing b o, onoc: wl g2,

we obitain,
R R SR SRS L W AR (6)

where \'l 2 Zlgry el Ve 'll‘.(rg bgbyrd i 7l 2}V, n],b,;rz:t%,
?
Vy - 2" (qb1 b—z' )z3. Expanding (6), we gel the Hamiltonian K(x,s)

for the evolution of x (7],
Ko Kyt Kat Kytoooo, (7)

where each K, is an nth degree polynomial in x.

2.2.2 Calculation of M

T'he linear map M is found froimn the quadratic part of the llamiltonian
K,

L PR 2 29 2 9 .1
K, 'Zn(nazz t ghyz3 i 727e [ S ;lizﬂ)‘ (8)

Following |7) we oblain the equations for AL, which together with the

initial conditions give the following solution matrix,

I My, 0O 0 0 Mg
0 1 0 0 0 0
[} 0 Mays My 0 (}
M 1 0 Mys Mqyy 0 0 ! (9)
0 Ms; O 0 1 Mg
0o 0 0 0 0 1

where

M2 {10)

1
d.l
[ ni(s)"

: g(s') (] 9’
Mo X,'n"‘(s') is', (11)

The remaining matrix clements, Myq, Mg, Myq, M4y, are given by,

I
M. s')ds'
a4 /" 11(5')1‘144(’ )(1! (IZ)

My~ M;,

and .
(‘s )bl(5 )AI”( /)([‘

g
My -
3 /,- n(s')

We can write the following equations for Mqq and Mgy,

Mja(s) ”('5) /'-"(‘nzl:( D bty (s, (11)
Mials) g(:v)(b:)“) /'n(ls')M“(S')dS,' (15)

Fquations (14}, (15) can be solved by iteration,

ll ”
M - (s ds"ds'

33( /-/ n( ’)n( ”

” 1"’
1 .9 )(] ) 4
/'/' f f o In o )”( iy A (16)

Mqa(s) — //' *) ds"ds

o\ n(s')n(s"

'llli ”'ds"ds (l—l')

[ [ e “"5"75)?(?53“‘

My 4 and My g are then given by (12), (13).
It should be remarked that the iterated solutious (16), (17) are just
Lhe power series expansions in the “fringe extent parameter™ e.

2.2.3 Calculation of f; and [,

Lie Algebraic polynomials f3 and fy are determined by the linear map
M and the non-quadratic terms in the Hamiltonian K [7],

fola) = fl{g(fw(a')x)d", (18)

fa(s) = - ﬁmw( /' F(s) : Kt

We write,
67 1
3(s2) = LZ{T,J(:;;)Z,-:)-,
1 '
6 1 b
4(02) = Z(ngr”""(”’)r"”" (21)
ErETE

where 7;;(s2) and v k(s2) are some line integrals given in [97; there are
10 non-zero v’s aud 19 non-zero v’'s.

1(s')x)ds'.  (19)

(20)

2.2.4 Canonical Matrix Representation

We can expand exponentials in (3) to obtain a power series,

zl = = .oexp(: fu )ezp(: f3 ) Mas7s
!
(M fa b )M fa +z:f3 24 Mgz
1
Mapzot 2 fa: Mapze + (2 far 4 5 i fa )Mz - {22)

We can also write a formal Taylor expansion,

D= Mz = Mapzy + Qabe@b®e 1 WabedThTcZd 4 <0y {23)
where we sum over the repeated indices and taked < e < b= I,...,0
to avoid the occurence of the same terms in the sum.

The terms in (22) can be identified with the matrices of {23),
(24a)

23 MapZy « 0 Qabe®pTey

Z)A[ubl'(, ¢ (2’1{))

1
(- Ja: 7 S v WopedTpZcZd-
‘T'here are 72 non-zero matrix elements out of total 498 (6 x 83): 12
Mai's, 20 Qup.’s, and 40 Wyieq's. They depend on 75’8 and vij's. Q

and W are given in [9].



856

2.2.5 Transformation to TRANSPORT coordinates

Let X denote the TRANSPORT coordinates, X (z PRy

2y ' L~ L7, 8). We can relate X,’s to the canonical variables as
follows |6,
z' P T e (25a)
\/(l 16 (pr o as) -1}
y o I - (25b)
\/U VO - (pe )t R

These expressions may be inverted by solving for p, and p,,

1} 6)x’
Pz U | ;TL;})T 730 (26a)
vireeawy
r
(L1 &)y (265)

p St
¥ \/| G yﬁ
We now evaluate equations {25), (26) at the fringe region’s final and

initial points, s; and s, respectively.

I. AL the final point s;:
2
B, = Bo, by by =0, ag(s3) = b 1(a2) = [ b(s')ds’.
Al

Recalling that p, zy f siny, g sinyr b and denoting

coordinates at s, with the superscript f, we gel,

X/ -2, (27a)
J
DY A 2 19 = (276)
n
) g (=)
xd =2, (27¢)
/
x/ 4 S (27d)
! ( /2 s 2 /2
\/(l + zg) (z5 4 9) (=1)
2. Af the initial point s;:
B =0, a.(5) - 0.
Remembering that 2'? = tan 1 initially, we get
r, — Xy, {28a)
11 X)Xz 1t :
I, sint t ( ],5)( I,J,,Aa.",ww,),,,,, (286)
\/l 4 (X2 4 tany)? + X}
T3 = Na, (28c)
(11 ‘\‘3)_.’_‘_.‘?,..'_;_ (28d)

T4 -
\/I 4 (X 1+ tany)3 t X7

2.2.6 TRANSPORT transfer matrices
Given M, Q, W of (23), 11, T, U of (1) are obtained as follows,

I. Expand (27) in a power series to obtain,

\({ = L,,(,:r,{ f Ndhrr,{z! } [)né,rd?f,{T!T,{ [ (29)

2. Substitute the power expansion (23) for z{ in (29) to obtain,
X! (30)

«

Loty § NaseToTe | PapeaTo® g | oo-

3. Iixpand (28) in a power series {o obtain,
(31)

and substitute (31) into (30) to obtain the desired oy, Tases Usbed-

To o Loy Wy b Nape Xy Ne t Papea Xp X Xg -+

The details of the calculations and the final matrices are found in [9].
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