
782 

LONGITUDINAL SPACE CHARGE VIA MJLTI-PARTICLE SIhlULATION 

J.R.hlaidmrnt 
Rutherford Appleton Laboratory. 

Chilton, Didcot, England 

E.A.Karantzoulis 
Dcutsclws Elrktrollrn-Synchrotroll DESY. 

Notkrstrassr 85, D-2000 Hamburg 57, IVest Germany 

Sununarv 

Sonle features of a longitudinal simulation rode, PHAEI)RA. 
written for USC on the IBM mainframes at RAL and DESY are de- 
scribed. The code may be viewed as one-dimensional in that no 
account is taken of transverse motion The numerical methods cho- 
sen to evaluate longitudinal space charge forces are discussed. Code 
predictions are ronqx~rrd for some analytic cases. The results ob- 
tained in simulation of DES\- III 1’1 are presented and discussed. 

Introduction 

During design studies for the proton rf systems of both the 
injector synchrotrons and main ring of HERA 1’ a number of unco11- 
ventional proposals for rf gymnastics were evaluated using a series 
of “one-off’ tracking codes. Features of these. such as programmed 
rapid changes of voltage and phase, have been incorporated into 
PHtZEDR.4, however, as the final schemes for acceleration and trans- 
fer do not rely on such manipulations, we concentrate here on broader 
aspects of the numerical methods. In particular we assess the extent 
to which one can believe the predictions, comparing results for cases 
which may be solved analytically. 

Space charge plays a significant role in determining the dynamics 
close to the injection energy (50MeV) in DESY III, the slow cycling, 
7.5GeV,‘c booster for HERA and assumptions allowing analytic es- 
timates of expected behaviour I31 have been made when specifying 
system design parameters We therefore used the code to investigate 
the validity of those studies. 

Difference Equations 

We assume there is only one accelerating cavity in the ring, or 
that we may represent all the cavities by the total voltage applied at 
a single azimuth and write the equations describing the longitudinal 
motion of a particle with respect to that of a synchronous particle 
as: 

where the subscripts n,n+l refer to successive revolutions, 
A-t 5 5. and A4 = C$ 4.. 

For a line charge distribution the total voltage per turn experi- 
enced by a particle, including that contribution due to the (inductive) 
chamber inlpedance. may be expressed as: 

l;,(d) : -,hl$ 
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Where ti = angular revolution frequency. I, = effective wall illduc 
tanrc, Z. - 3ii ohms, y0 is a geometric factor I41 and Jz”” X(b)d@ 
2 N, the no of particles per hunch. The linr density is evaluated 
once per turn thus implicitly assuming that the distribution changes 
onlv slowI\ within rhe revolution time. 

Space Charge Algorithms 

The chief problem in nunlerically evaluating the line density 
X(o) and its derivative is to reduce the statistical noise due to the 
(relatively) small number of macro-particles whilst retaining real 
high frequency density modulation. To this end we have examined 
the behaviour of two techniques, firstly a digital filter (DF)and sec- 
ondly a method using Fourier transforms (FT) coupled with selective 
attenuation of high frequency components. In both cases an array 
of discrete values of line density is formed using a binning technique 
which employs linear assignment of macro-particle charge to neigh- 
bouring bins. This in itself gives a degree of pre-smoothing when 
compared with simple nearest bin assignment. 

The choice of number of bins coupled with the number of macro- 
particles used determines not only the degree of noise but also the 
cpu time needed per mapping and the ranges quoted below reflect 
the influence of the mainframe batch processors upon which the code 
has been run. We ran test cases with at most 10,000 macro-particle? 
and up to -250 bins covering 2~ radians of rf phase. 

The DF technique places a specified number of bins over that 
phase length which just encloses the particles and the resultant line 
density is smoothed by adjusting each value based on a quadratic fit 
over 3 neighbouring. but not necessarily adjacent, bins. The differ- 
ential is produced by differencing these smoothed values and then 
applying a further averaging via a quadratic fit. The number of bins 
and the range of the local fit were optimised by generating a num- 
ber of analytic line density functions, including random noise, and 
comparing the smoothed derivative with the analytic values. 

For the FT method we use a fixed no. of bins spanning 2n 
in rf phase, form the transform of the discrete array and attenuate 
the resulting components using a “low pass filter” with gaussian roll- 
off. The derivative is formed by the standard complex multiplication 
followed by forming the inverse transform. The free parameters are 
the no. of unattenuated components and the width of the roll-off. 
These were optimised as described for the DF method above and it 
was possible to provide a function describing this optimum in terms 
of the second and fourth moments of the binned distribution. 

The array of derivative values resulting from either method is 
passed through a common block to the mapping routine where it 
is scaled by the energy dependent terms and the energy change ap- 
propriate for a particle at a given 4 coordinate is found by linearly 
interpolating between adjacent values. This does not involve further 
calculation over the macro-particle array since the needed informa- 
t ion hai already been calrulat rd in the original line density routine. 

tht tr the DE and FT spare charge solvers have been incorpo- 
rared iut o t hcs code. The uier mav choose. via input data, whichever 
hr wishes. Bin numher defaults are 32 for DF and 128 for FT coupled 

with lO.OOU particles. These values influence the highest frequenr) 
of bunch ahape modulation which can be resolved and may not net- 
eiaarily be appropriate for all cases. In addit ion, if the FT solver is 
chosen, the user may overwrite the recommended “low-pass filter” 
suloothing paranleters if w desired. 
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Several distributions. varying in phase extent from *3K/4 to 
-L-x/4. with 0” c. 0, ~~25“ and with 0.2:. i;,/i:, 10.5 were tracked. 
For 4, =Oc the analytic value of 11, was calculated and u\ed to over- 
write the discrete array and thus check that the error arising front 
linear interpolation was insignificant. Most were run for 2000 rev- 
olution< corresponding to between 5 and 25 synrhrotron periods. A 
few selected runs were performed with up to 100.000 revolutions. 

Analvtic (‘omparison -.d--.---...--- 

I<mpirirai adjustnwnts to obtain fits to arbitrary (known) deriva- 
tive functions alone are not a sufficient test of the extent to which 
we can believe tracking predictions. We therefore compared in some 
depth the code predictions when applied to a phase space distribu- 
tion for which matched conditions rrlay he analytically calculated 
and under %-hi& the distribution is stationary. Such a distribution 
is that with elliptic energy density as discussed hv Hofmann and 
Pederson. 1’1 

The phase spare density of the H-P distribution is given as a 
function of the Hamiltonian. hy 

g(Ay,q): g(H)= klHb-H)",' 

where Hb is the Hamiltonian of the hunch boundary. The energy 
density is elliptic and the line density has the same shape as the 
potential, in this case cosine-like. An input data H-P generator was 
coded together with a general analysis routine which finds the pa- 
rameters of the matched H-P distribution given the hunch area and 
then processes the given set of tracked coordinates to produce the 
cumulative phase space density for prescribed fractions of the total 
number of particles used. The deviation of this cumulative density 
from the theoretical function together with that fraction for which 
H .Hb are used as measures of the tracking accuracy. The statisti- 
cally allowed variation of the density measure was estimated by using 
the generator to produce 500 initial distributions and then process 
them with the analyser. 
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Fig 1. [a) Phase space plot. (b) Space charge vultagt 
array ( solid line ) of a long term tracked 11-I’ 
distribution. The dashed line ii the theoretical 
space charge voltage of the initial distribution 
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Figure 1. shows the phase space’ plol and calculated space charge 
voltage for an input distribution of phase extent i r/4 and 9,-O” af- 
t er tracking for -80.000 turn> via the DF method. Figure 2. shows 
the resultant curnulntivv density. Tht, case shown corresponds to 
-900 synchrotron periods after which time some 4%; of the 5000 
particles lie outside the input. phase space area. This long tern] be- 
haviour is typical of both FT and DF algorithms. in the shorter 
term (-. 100 synchrotron periods) the cumulative density is slatisti- 
tally stationary and ~-1%~ have H,Hh. 
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Fig 2. Cumulative density compared with theory for the 
distribution of Fig 1. 

Simulation in DESY III 

The early stage ofacceleration in DESY III consists of three dis- 
tinct steps. Firstly quasi-adiabatic trapping of the 50MeV injected 
linac beam within 1Oms during which time the rf voltage is raised 
from 0.5 to lEkV following an iso-adiabatic law such that n,,the adi- 
abaticity parameter ial, is -0.1. Secondly the main bending field is 
raised as a quadratic function of time until after a further 1OOms 
the maximum rate of field rise. equivalent to dp/dtb5GeV/c/s, is 
reached. Finally the field increases linearly with time maintaining 
the acceleration rate constant. 

As input distribution we used 5000 particles, uniformly dis- 
tributed in phase (-r,r) and gaussian in energy deviation with rms 
-59keV but cut off at 2~. The area of the enclosing rectangle in 
phase space is O.O72eVs, the nominal Iinac specification. The pre- 
vious analytic estimat.es 131 showed that, an rf voltage 2 16.5kV is 
needed to ensure that the minimum bucket area, which occurs at 
the time of maximum dB/dt, contains this injected emittance. 

After each application of the mapping, the particles were scanned 
and those with phases outside the sampled 2a region were replaced 
appropriately within the region. This simulates the neighhouring 
bunches and is only significant during the trapping process. To sin- 
“late the transverse momentum acceptance those particles with mo- 
mentum deviation tl.5~10~~ were removed. 

Figure 3. shows phase space scatter plots, pluc the correspond- 
ing space charge voltage array% produced by the FT method at: (a) 
the end of trapping. (1)) thr end of quadratic field rise and (ci after 
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Fig 3. Phase space plots and space charge voltages during simulation in DESY III . 
(a) after trapping (b) 100 ms later (c) after a further 100 ms 

a further 1OOms of linear field rise. Particle loss. of < 1%). occurred 
within f3Oms of the start of constant dB/dt. A total of -100,000 
mappings were used in this simulation of 21Oms real time and rr- 
quired -160 mins of cpu time on the IBM 30844 at DESY. At 
RAL, where an IBM 3090-200E is available. the cpu required was 
some 5Omins which is accounted for by the faster processor cycle 
time. The same simulation was run using the DF algorithm, giving 
very similar results but using -10% less cpu time. 
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Analysis of the tracked distributions with respect to matched H- 
P bunches of the initial input phase area. using the density measure 
outlined above, shows that the resultant bunches have a denser core 
and that some particles form a halo beyond the expected phase space 
limits. The density profile is consistent with the gaussian energy 
distribution used as input dat.a and the halo increases from -0.5 
1% over the time scale of Figure 3. 

C:onclusions 

We have demonstrated. by using the analytic values for the ar- 
ray of space charge voltages, that the difference equations represenl 
well the motion of one class of stationary distribution. Both numer- 
ical space charge algorithms described display similar non-perfect 
behaviour. Increasing the number of ntacro-particles and/or sub 
dividing the t.urn to evaluate X(Q) at some average azimuth may 
improve the accuracy but at the expense of greater computing over- 
heads. The simulation for DESY 111 does not invalidate the earlier 
analytic studies. 
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