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THE LONGITUDINAL COUPLING IMPEDANCE
OF A CYCLIC ACCELERATOR VACUUM CHAMBER WITH SMALL CROSS-SECTION VARIATIONS

S.5. Kurennay,
Institute for High Energy Physics,

Abstract. The method for calculatian of
the coupllng impedance of perturpations
sequence, which are small variations of
radius, in an accelerator ecylipdeical
vacuum chamber is developed. 7The ganeral
expressions for the impedance and
characteristic features of resonances are
obtained in the case when perturbations are
disposed periodically. The dependence of
the impedance on random violations of
periodicity is investigated in the
framework of a statistical approach. The
longitudinal impedance of conical
transitions and fast demountable joints in
the UNK ist stage chamber is calculated.

1. Introdugtion

The conditions of beam longi tudinal
stability are tupically formulated in the
form of bounds on talerable value of the
coupling impedance (e.g.[11}. Then the
problem is to calculate the impedance for the
given ogeometry of the vacuum chamber. The
present work develops the me thod of
calculating the longitudinal impedance of a
chamber with small cross-section variations
to be termed below e-expansion. The idea of
e-expansion was put forward in paper [2Z] and
was used in [J,4] to calculate the impedance.
In contrast to paper [J], our version of the
me thod takes into account the finite
conductivitiy bof the chamber walls and
considers an arbitrary beam energy (Sect.2).

In addition, we succeeded in generalizing
g-expansion for quasiperiodic structure
(Sect.3) with the help pf statistical
approach. In Sect. 4 the longitudinal

elements is
details can be found in

impedance of some UNK-~1 chamber
calculated. More
[5,8&7.

2. g-Expansian Method: a Periodic Case

Consider an axial-symmetric vacuum chamber
whose boundary is r=b(z)=bw(z), where b is
the mean chamber radius and w(z)=i+es(z2) has
the period D=2nR/N. Here R is the mashine
radius, N is an integer. lLet &=2nz/D and we
will npormalize s(O)=I Z4{(CLcos(p@)+S,sin(p9})
by the condition Var[s(9)]=2. Let a
transverse - Thomogeneocus beam of a radius a
moves with velocity pc aiong the chamber
axis. Consider the n-th mode of the
longitudinal perturbation of beam current
densitu

= ppBec exp{ikz - iwt) , (1)
where k n/R w=fck. The fields produced by
current (1) have the form ({(ihe factor
ipp/leghlexp({~-imt) is omitted)
o ikmz '

E,= I e [Amf\kmr)-smn{g(Xr)}] . (2)

and similarly for Ep,Hg. In (2) kyp=m/R;
X2=kZ-(w/c)?; X=X, =k /Y Y= 1/v(1 ﬁa),
flu)=Ty(uy, g(u)=Xa[K,(Xa)I°(u)+1,(ka)ﬂo(u)];
the upper line in {...) corresponds to 04rga,
the lower one to rp2a.
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To find A, , let us impose on fields (2)
the boundary candition 3)
2
LE +b/(2)E +(1-1) 51+ (b/ (1)) H ] =0,
2 < r=b{z)
where Zo=120n Ohm; & is the skin depth at
frequency w. After substituting (2) into

boundary condition (3) decompose the obtained
equation over the system of functions
{exp(ikyu2)}l  which is complete in {e:
@<1<2rR} . As a8 result, we obtain the infinite
system of linear equations for the field
coefficients FqEAn+qN (Ap=0, if man+qgN;
q=0, +1, L)

I MJQFQ = Rj , 4 o= B 1, (4)
q=-o

where
f’(xqw)
(f(xqw) - -m;»-—tiw’G(I+qG)+

T

+(1+inyl+G w T 11>, (5)

M =celfa-ide
Jq

,
g/ (X, w)
— S

R_=<e—1J6(g(xow) - "
Jd 0

*Liw/ GE+(1+iINV1+6 w/ 31>

G=2nb/D; }*wb/Bc n=8/2bi{ab/c)?;
Ng=Xb=F/Y¥; xp-(xn+ Nb ) —u°+2paZ+(pG)z <. . .>
means averaging over 9¢[9,2n] (e.9g. Cwr=11}.
The system which is a particular case of
{#)~(5) for Y¥Y+= u 6+« was considered in paper

[z1.

In (5)

By definition (e.g. [A1) the longitudinal
impedance is
1 2nR R
Z, =-- 5 | dz e ikZg , (&)
p_Peoma z
1]
where E, is the beam cross section-averaged

value of the field z-component amplitude.
Fraom (2) and (&) we obtain

z 2iZ° 21, (xa)
LU 5 < Fo - 1 (&)
n B(ka)

Sustem (4) truncated by the conditions

splved oaumerically.
ourselves to the

lil, 191£8gax can  be
However, here we confine
case when h3Var[b(:)l<<b, i.e. e=h/2b<<!.
Then, the truncated system can be solved
analytically, by perturbation method. If
nlxq|<<i for all 191 Qpgu. then matrices

and R may be expanded into a series over
tAn pnwers of #. Now we seek for Fy in the
form of F °)+cF§‘)+nzF 2. Solving
reccurently the systems o equations at
g% et e etc. we find F in analytical
form.” As a result i212(2), where
208)=p(edy. Here Zt° 15 the 1mpedancn of a
smaoth chamber with radius b, 2¢1)=0 (this
was noted in [2-4]), and
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(2) 2|21, (2x ) I, (x,)
Z . ig € 1°b7e 1
" *—12055 ~’§;”~*— I (xd+(1+idm % —}
bo
a (Egp6 )+ (1411 F(2-F (x )
* 2 (c +s )c(§—+p6) Y .
Pp=1 ¥? F(xp)~(1+1)n

- 2
¥ (peep)¥ T+(1+i) gt (2497601, (D)
XI 71 (%), x >®
where F{x)= he
Ix I, Cix) /7T, Cix]),

x2<0.

For Y-+= and 6-+= the limit of (7) coincides
with the result given in [3]. The energy
dependence of Z2'%*?/n at low frequencies (¥<1i}
and/or at high energies (for example, for
UNK:¥>75) appears to be weak. However, during
acceleration in U-70, with BY variung from 3
to 735, the resonance force may increase by
several times.

Resonance fregquencies are determined by
the equation Fix. ) -n=0. The resonance
parameters are expressed in the simplest way
for ¥ >»1. So, resonance freguency f
corresponding for the specified p to the r- ih
radial mode is

= Bep ; 2
P 20 [1+(J°r/p6) ] R (8)
where Jo(jop)=0, r=4,2,... The resonance
width is
8 2
(286), o= o g [1+ 00, /PE) (9

and the value of Re Z(?)/n in the peak is
(2)
~3
, T 12b
_%_- =27 (c +S )[t+(1.r/p6) ] .1

These extreme expressions, (8)-{10), are
analogous to those obtained in [J].

3. Generalization for 3 Quasiperiedic Case
Let the inserts of the same shaps be

placed along the ring in suych a way that the
position of i-th {i=1,...,N) insert
i*(x 1/72)D+x; differs from 1its position
¥ =(i-1/2)D in rigorously periodic
structure by a random variable x;. We assume
all xj; to be independent and have Gaussian
distribution; naturally, the r.m.s. deviation
d<<D. Let wus choose some set of (xil

i=1,...,N. Then the period of a structure is
D=2nR and all changes in (7) are reduced to

replacements G-G/N and C (N}. Av-
eraging over the dlstrlbuglon of (xlg yields
(c™ytes™) o’ w8’ e (a) (11)
P p p/N p/N P '
1 2ndp 2
“{1~exp{~|=——i ), 23N
Sti-exp}- 2] pes
¢$(d)=

2 2
2nd 1 2nd
wol-[g] Jrgo-ee ] b

p=jN, j=1,2,

The coefficients C; S in the r.h.s. of
alreadu corresponds to the
structure, the index J is
Note that @,(0)=8

The folgowing two
results are easily obtained
account of (11):

(i) in the
wljgyc/b, the

(11)
D-periodic
replaced by p/N

important general
from (7) with

nonresonant region,
impedance of a
quasiperiodic structure colncides with
that of a periodic one (it is natural
because there are no propagating waves).
(ii) the factor determining suppresion
due to periodicity violation foar the
periodic structure resonance (p,r) is

2 o« N _+1
vp(d)=exp{—[3ggp] ]+—E§E~—(1—exp{~[gggp] }).

(12)

In eq.(12) Np is the number cf "new"
(occuring in quasiperiodic structure)
resonances hitting the band (24f) af the
"old" resonance (p,r)}; «op (1/2<ap<1) takes
into account their overlapping. Denote the
distance between “old” resonances through
8fp fp+1 -fp then that between “new" ones is
Bf=8§,/N. Obviouslg, Np=0 if (Af)p<ef,
otherwise Np=(26f)p/8f. As seen from (12)
¥p (0)=1; and when d>>0D/2np (resonance wave
length A <<4nd) the suppresion is maximum:
?p(d)=(¢pr+i)/N~¢p(2Af) /8fp+1

Note that for overlapplng "old" resonaces
(CAf)p28fp)  apl, Np4N 1. Therefare in the
rngzon where periodic structure resonances
overlap (near tne frequency cut-off, w=jgc/b
- see (8),(9)) the impedance does not
decrease with periodicity violation.

4. Application of the Method:
ihe Impgdance of Some UNK Chamber Elements

Tests of e-expansion by comparison with
the results on npumerfc calculations of
resonances (we used the MULTIMODE code [%]

for shart period model structures) shows a

gond agreement for e6G=nh/D<<d (see paper
{63). However, numeric method is inapplcable
for long-period structures (D>»b, as in UNK)
because the time uysed to compute weach

resonance increases as D?, with the number of
resonances increasing as D. On the contrary,
the a—expanslon method works well for long
periods because the necessary condition for
its applicability, p<<D/sh, for two cases
considered below has the form of p<<750@ and

p<<400. Besides, near lower radial mode
resonances we have e|x_j]<<1 regardless of
the value of p because in this case
[ plziop-

g) Conical Transitions (CT) of UNK-I. Each

period of the normal magnetic lattice (N=140)
is Dx92m long. Inside a period the chamber
cansists of two equal-length cylinders (in
ralculations the elliptic cross sections were
replaced by round ones with radii b,=2.8cm,
b,=3.2cm) connected with 3@-cm CT. In this
case, b=3cm, c=(bz—b,)42b=1/15 and we accept
6=1.43- 10% ~(Ohm-m) The calculation
performed accordlnq to formula (7) yields at
low frequencies Im 2¢2) /p=.@.3mOhm which is
much less than Im Z¢9)/n. Near the minioum
resonance frequency fT‘“z(Zﬂ) Y joic/b=
3.825GHz



(pup¥=jos 7621173) about 20 resonances
overlap, which yields Re 2(2) /n~0. 4mOhm. From
{(7) and (8)-(10@) we obtain:

for f=107:10'% Hz

Re Z(®) /nimOhm; —tmOhm<Im Z¢2)/n<o. (13

If the transitions were short, 1%1cm, this
estimate would have been iz(’)/n1<6.13 Ohm .

Since the periedicity of the cT is
violated (due +to the presence of special
sections, etc.) the value of split resonances
in UNK-I decreases by about (8f)p/(2Af)p=2+5

times (see Sect.3). This allows one to
decrease twice the estimate of Re 2¢*}/n in
(13). For 1%£icm, the estimate is left

unchanged because max Re Z*'/n is attained
near the cut-off frequency fT‘" (overlapping
resonances). |

2) Fast-Demountable Joints (FDJ). When the
vacuum chamber sections are assembled, small
cavities are left on its walls. (et wus
consider the following model in our
calculations: 3 mm long, S5 mm deep inserts
with the distance between them D=é6m. We study
inserts of two tupes: (A) —~ cosine-shaped and

(B) — triangular. Since b=Jem parameter
e=1/42. At low fregquencies,
Im 2€2} /n=_56 4mOhm and -&5.{mOhm for (A)~-

- and (B)-shaped inseprts, respectivelu, which

are noticeably larger than for CC7. The
resocnance overlapping vields the max imum
value of Re Z/n for the 3Id radial mode:

85mOhm near {PlN213 763GHz. For the  1st
radial mode Re Z{*)/nz3emOhm in overlapping
point and for r=2 (fPINx 8 782GHz) it is
about S55mOhm. The estimate of a4 FPJ impedance
in the resonance regign for rigid periodicity
1s

Re z¢2) /n<0@.2 Ohm; 1Im 2°%2/ni£0.4 Ohm. (14)
In the real lay-out of FDJ‘’s periodicfity is

vioclated. Due to suppression of split
resanances Rp/n decreases by
(5f) /(ZAf)pziO+2g times. As a result,
max Re z2¢2)/n is reached near the cut-off

frequency PN  and instesd of (14) we have
1Z€2) /nj<0.1% Ohm.

Thus, for f>f.,1=3.8 GH:z the impedance of
FDJ’s is larger than that of a samooth
chamber. And still, the impedance induced by
CT’s and FDJ’s is essentially smaller than
the upper limit imposed by the longitudinal
beam stability requirement for UNK:
{Z/n |45 Ohm (see paper [11]).
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5. Conclusion

The e-expansion method makes it possible
to calculate the impedance of a set of vacuum
chamber elements with small c¢ross section
variations both in the low and high frequency
ranges. This method is wvery convenient for
long-periodic structure for which numeric
methods are difficult to apply. Statistical
account of periodicity violation (see Sect.J)
allows one to estimate the impedance of real
accelerator structures.

The authors are sincerely indebted to
Dr. V.I. Balbekov for helpful discussions and
remarks.
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