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AbstracJ-,-The method for calculatian of 
the coup1 ing impedance of perturpations 
sequence, which are small variations of 
radius, in an accelerator cylindrical 
vacuum chamber is developed. The general 
expressions for the impedance and 
characteristic features of resonances are 
obtalned in the case when perturbations are 
disposed periodically. The dependence of 
the impedance on random violations of 
periodicity is investigated in the 
framework of a statistrcal approach. The 
longitudinal impedance of conical 
transit ions and fast demountable joints in 
the UNX 1st stage chamber is calculated. 

i. Introduc tio_n_ 
The conditions of beam longitudinal 

stability are typical Iy formulated in the 
form of bounds on tolerable value of the 
coupling impedance (e. g. Gil f. Then the 
problem is to calculate the impedance for the 
given geometry of the vacuum chamber. The 
present work develops the method of 
calculating the longitudinal impedance of a 
chamber with small cross-section variation5 
to be termed below o-expansion. The idea of 
c-expansion was put forward in paper Cal and 
was used in [3,4; to calculate the impedance. 
In contrast to paper [31, our version of the 
method takes into account the finite 
conduc livi ty of the chamber walls and 
considers an arbitrary beam energy (Sect.2). 
In addition, we succeeded in generaIizing 
o-expansion for quasiperiodic structure 
(Sect. 3) with the help of statistical 
approach. In sect.4 the longitudinal 
impedance of some UNK-I chamber elements is 
calculated More details can be found in 
[5,61. 

2. ~~xnanr~nl?ethod_a~~r~~~~c~~~~ 
Consider an axial-symmetric vacuum chamber 

whose boundary is r=b(z)=bw(z), where b is 
the mean chamber radius and w(z)=i+es(z) has 
the period D=2nR/N. Here R is the mashine 
radius, N is an integer. Let 9=2nz/D and we 
will normalize s(Bl=TpZi(C cos(p61+Spsin(p8)) 
br the condition Var s(e11=2. P Let a 
transverse - homogeneous beam of a radius a 
moves with velocf ir Qc aiong the c ham&r 
axis Consider the n-th mode of the 
longitudinal perturbation of beam current 
density 

jz = pnjJc ewp(ikz - icrrt) , (1) 
where k=n/R, w=pck. The fields produced by 
current (1) have the form ( the fat tor 
ipn/(c,klexp(-iut) is omitted) 

ik,z 

and similarly for Er,Hyr. In (2) km-m/R; 
k;=k#$-(w/C)*; %:X,=k/Y; Y=l/-&l-82,; 
f(U)=lp(U), s(u1=1aCK, (Xa)Io (ul+lt (XalHu(u)l; 
the upper line in 1 ..I correspond5 to O$r.$&, 
the lower one to rka. 

To find Am , let us impose on fields (2) 
the boundary condition (31 

I 
=Q, 

r=b(r) 

where 2 5=i20n Ohm; 6 is the skin depth at 
frequency w. After substituting (21 into 
boundary condition (3) decompose the obtained 
equation aver the system of functions 
fexp(ik,z)) which is complete in (2: 

0<2<2nR). As a result, we obtain the infinite 
system of linear equations for the field 
coefficients Fq”An+qN (Am=@. 
Q”0,Ltl.. . .): 

2 H =Rj > j = 0,ir 
p=-#O J QFQ 

where 

M =<ei(Q-j)S(f(x w) - -- 
f’ (XoW) 

-- 
jQ 9 

C 
xQ 

if mtn+qN; 

,‘.. I (4) 

w’G(I+pG)+ 

---- 
+( l+i)~~i+G2w’*31> , (51 

R.i=<e 
-ij8 9’ (now1 

(s(row) - --y---- Q 
(I 

+[iw’Gz+( l+i 1~~~+62w/z71> 

In (5) G=ZnbfD; J=ub/p c ; rt=S/Zb(wb/cJ’; 
xe=xb=Z/Y; X+&,+pNb) 2=,$+2pGz+[pG)2; <. .> 
means averaging over 6CEQ, 2.1~3 (e. 4 <w>= 1) 
The system which is a particular case of 
(4)-(5) for Y-s= n 6~ was considered in paper 

c73 
By definition (e.g. CS?l the longitudinal 

imoedance is 

where EL is the beam cross set tion-averaged 
value of the field z-component amplitude. 
From (2) and (a) we obtain 

z n 
2i2, 

-z--P.- 
n C 

21, (Xa) 
--- I= - 1 

j3(ka)* ‘a ’ I 
(6’ I 

System (4) truncated by the conditions 

lj I, Is II;Qm3x can be solved numerically. 
However, here we confine ourselves to the 

case when hsVarCb(z)l<<b. i.e. c=h/2b<<l. 

Then, the truncated system can be solved 
analytically, by perturbation method. If 
c(wQl<<l for all lQlc Qm,x, then matrices 

:c 
and Rj may be expanded into a series over 

a powers of E. Now we seek for in the 
form of F&O)+& 

4 
‘)+c2F 

Fq 
*)4.. . Solving 

;;ccyre;tlu the syr ems epua tions at 
,c ,c ate. ~ we find F i) 

f 
in analytical 

form. As a result .- 2(i) where 
z(i)=o(Ei). Here Z~@l*?~ th~=fmped~nca of d 
smaoth chamber with radius b, L(’ )30 (this 
was noted in C2-41 ), and 



762 2 (2) 2 - =-iZ 
2 21, (:x0) 

C- [ I[ I, (x,1 -2 

n 048 -a- I, (x0 )+( i+i lQ------ 

GXO xO I 

G man 2 2 
(‘$+pG)+(i+ila(2-F(xoll 

+ E (Cp+Sp)C+pGd-------- 
P'l Y F(xpl-(l*i)rt 

+ (pc-p~~Y-‘+(l+i)~~~*(2+p2Gi)~ , (7) 

I xX,/I,(x), x*X3 _ 
where F(K)= 

x*<0. 

For Y-W and 6+* the limit of (7) coincides 
with the result given in CJI. The energy 
dependence of Z (*j/n at low frequencies (E<i) 
and/or at high energies (for example, for 
UNK:Y>75) appears to be weak. However, during 
acceleration in U-70, with jly variyng from 3 
to 75, the resonance force may increase by 
several times. 

Resonance frequencies are determined by 
the equation F(x-p)-q=O. The resonance 
Parameters are expressed in the simplest way 
for Y >l. so, resonance frequency fP r 
corresponding for the specified p to the r-th 
radial mode is 

2 1 r (8) 

where J,( jorl=0, i-=1,2,. . . The resonance 
width is 

(2Af)P r= fP 
, 

and the value of 
(2) 

R P, r 22b -- 
n = zoo g- ,( 

1 

These extreme 

Re 2(*)/n in the 

(9) 

The coefficients Cj,Sj in the r. h.s. of (11) 
already corresponds to the D-periodic 
structure, the index j is replaced br P/N 
NOt:h:hat Cp (8)‘“8p, jN. 

folPowinq two impor tan t general 
rtslrl ta 3r9 sas*lr 9!3?+?%?l9r! frw!! (71 wl!h 
account of (ii): 

(i) in the nonresonant region, 
rtl<jsic/b, the impedance of a 
quasiperiodic structure coincides with 
that of a periodic one (it is natural 
because there are no propagating Waves). 

(ii) the factor determining suppresion 
due to periodicity violation for the 
periodic structure resonance (p,r) iS 

(12) 
In eg. (12) the number of *new” 
(occurins quasiperiodic structure) 
resonances hitting the band (2AfIp of the 
“old” resonance (Par); 
into account their 

ep (1/2<dp<ll takes 
overlapping. Denote the 

distance between “old” resonances through 
unew” one5 is 8fp=fp+i-fp,,~~~~,~~~t beFz;n if 

8f=8fp/N. 
otherwise Np=(2&f)p/8;. 

P (8f )pC@f, 
As seen from (121, 

Yp(0)“l; and when d>>D/2np (resonance wave 
length +,<<4nd) the suppresion is maximum: 
tp(d)n(apNp+l)/N”ap(2Af)p/Bfp+i. 

Note that for overlapping “old” resonates 
((AfIpWfpl 
region where 

dp+l, Np-tN-1. Therefore in the 
periodic structure resonances 

overlap (near tne frequencr cut-off, umJarc/b 
- see (8). (9)) the impedance does not 
decrease with periodicity violation. 

L peak is 
4. fip&&.&$l~oftheUlod: 

I 

-a &be XrnoMmAf Mom u~K_l;hamber Elements 
. (i(a) Tests of r-expansitn by comparison with 

the results on numeric calculations of 
expressions, CfJ,-$i0,, are resonances (we used the MGLTIM~DE code [91 

f or short period model structures) shows a 
good agreement for oC+=nh/D<<i (see paper 
I63 ). However, numeric method is inapplcable 
for long-period structures ID>>b, a5 in UNK) 
because the time urad to compute each 
resonance increase* 4s Ds, with the number of 
resonance6 increasing as D. On the contrary, 
the o-expansion method works well for long 
perio#‘s because tho necessary condition for 
its applicability, p<<D/nh, for two cases 
considered below has the form of p<<7500 and 
p<<400. Besides, near lower radial mode 
re5onance5 we have c~x~~]<<I regardless of 
the value of p because in this case 
IX- I%Jop- 

!) Conical Transi tions-sT)of_VNK-I.. Each 
period of thermal magnetic lattice (N=i601 
is Dlr92m long. Inside a period the chamber 
consists of two equal-length cylinders (in 
calculations the elliptic cross sections WQPQ 

replaced by round ones with radii bt=2.8cm, 
b2=3.2cm) connected with 30-cm CT. In this 
case, b=3cm, m=(bz-bl )~2bai/ili and we aCCept 

6~f.43~i04”(dhi~m)-‘. The calculation 
performed according to formula (7) yields at 
low frequencies Im 2(*)/n=-0.5mOhm which is 
much less than Im Zta)/n. year the minimum 
resonance frequency fylk(2n)‘* je,c/b= 
3.825GHz 

analpqous to those obtained in C3J. 

3. Generalization for a Guqsioer~~~iySlt 
Let the inserts of the 6ame shape be 

placed along the ring in ruih a way that the 
posi ticn of i-th (i=i,...,Nl insert 

rigorously 
structure by a random variable Xi. We assume 
all xi to be independent and have Gaussian 
distribution; naturally, the r.m.s. deviation 
d<<O. Let us choose some set of (Xi), 
i=i,. . ,N. Then the period of a structure is 
D=2nR and all changes in (7) are reduced to 
replacements G-&/f4 and CP,,SP+CbN), Sp hriid+ 
erasing over the dlstribu Ion of (Xi 

[ dN1 
(N) 2 

P 
P+(sp ) 4 +s* WpW ; (ii) 

p/N p/N 

(rb(d)= 

p=JN, jsi, 2, . 
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(p=p~=j~~/G~ll73) about 20 resonances 
overlap, which yields Re Z(*) /n=0.4mOhm. From 
(7) and (8)-(10) we obtain: 

for f=iQ’slB’* Hz 
Re Z(‘) /n<imOhm; -lmOhm<Im Z(‘l /n<B. (13) 
If the transitions were short, lriicm, this 

estimate would have been (Z(*)/nj<0.13 Ohm. 
Since the periodici ty of the CT ’ 

violated (due to the presence of speciii 
sections, etc. 1 the value of split resonances 
in UNK-I decreases by about (6flp/(2Af)p=2+5 
times (see Sect. 3). This allow5 one to 
decrease twice the estimate of Re Z(*)/n in 
(13). For lgicm, the estimate is left 
unchanged because man Re Z(‘)/n is attained 
near the cut-off frequency fyi” (overlapping 
re5onances). 

2) Fast-Demountable Joints (FDJL.- When the 
vacuum chamber sections are assembled, small 
cavities are left 0” its wallri. Let us 
consider the following model in our 
calculations: 3 mm long, 5 mm deep inserts 
with the distance between them D=bm. We study 
inserts of two types: (A) - cosine-shaped and 
(6) - triangular. Since b=3cm parameter 
c=l/iZ. At low 
Im 2 (n ) /n=-56.4mOhm 

frequencies, 
and -45.lmOhm for (Al- 

- and (El-shaped inserts, respectively, which 
are noticeably larger than for CT. The 
resonance overlapping crields the maximum 
value of Re Z/v for the 3d radial csode: 
85mQhm near fmrn=13.763GHz. FOP the 1st 
radial mode Rg Z(*)/n-30mOhm in overlapping 
point and for r=2 (f2 

minz 8,782GHz) it is 
about 55mOhm. The estimate of a FpJ impedance 
in the resonance region for rigid periodjcity 
is 

Re Z(*)/n<Q.2 Ohm; IIm Z(z)/njiQ. 1 Ohm 
In the real lay-out of FDJ’s periodiclty(‘?i 
violated. Due to suppression of split 
resonances R /n 
16f) /(2Af) =10+2b 

decreases by 

ii e Zi2jPn is 
times. A5 a result, 

max reached near the cut-off 
frequency fmin and 
IZ(‘)/nj<B.i~ Ohm. 

instead of f 14) we have 

Thus, for f>f cut=3.8 GHz the impedance of 
FDJ’s is larger than that of a smooth 
chamber. And still, the impedance induced by 
CT’s and FDJ’s is essentially smaller than 
the upper limit imposed by the longitudinal 
beam stability requirement for UNK: 
lZ:/nli;5 Ohm (see paper [II). 

5 1 con _c_?urLo_n 
The c-expansion method make5 it possible 

to calculate the impedance of a set of vacuum 
chamber elements with small cross section 
variations both in the low and high frequency 
ranges. This method is very convenient for 
long-periodic structure for which numeric 
methods are difficult to apply. Statistical 
account of periodicity violation (see Sect.31 
allows one to estimate the impedance of real 
accelerator structures. 

The authors are sincerely indebted to 
Or. V.I. Ralbekov for helpful discussions and 
remark5. 
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