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Abstract 

LONGlD’ is a tracking programme for the study of longitudinal 
dynamics in proton synchrotrons, in the presence of spa.ce charge. 
The model only considers motion along the beam axis. The beam 
is represented by an ensemble of macro-particles, tracked in paral- 
lel. LONGlD has a variety of ensembles available, as appropriate to 
coasting and bunched beams. It allows for the injection of additional 
particles, to facilitate phase-space painting studies. LONGlD can 
simulate the effect of radial and phase damping loops, and provides 
estimates of transverse incoherent betatron tune-shifts. This pa.per 
presents the physics algorithms used and some simulation reslllts, and 
comparison with experimental observations. 

Definitions 

Synchronous particle 
The synchronous particle is matched exactly to the magnetic 

bending field; and travels on the equilibrium orbit, with speed t,, = 
fl,c. The rest mass is mu, and total energy E, = 7,moc*. The charge 
is ‘le. The dipole magnets (radius of curvature TV) define the mo- 
mentum: pIyd = (qerd)/(mnc) x Bd(t). Let the peak accelerating 
volts be 6’ and the effective orbit radius &. The orbital angular fre- 
quency is w.(t) = (P,c)/~R,. The synchmnous phase (&) is defined 
by: sin(dd) 9 (2ar,,R,)/V(t) x (dB,/dt). 

RF-phase 
The individual particle RF-phase is defined to be: the phase of 

the cavity electric field at the moment the beam particle crosses the 
accelerating gap. The equation is : 

@.a.rf = -$$G - Es) + ($8 t iFf) J J 
The first term (in Eb - Ed) to the right is due to the lattice dispersion, 
with qs = [l/7: - l/7:]. The middle term accounts for changes in $8. 
The final term (in &r) is the additional phase advance that accrues 
from cavity RF-errors or the deliberate frequency variations induced 
by damping loops. Ideally &, is identically zero. 

Constant emittance 
The system is Liouvillian: the emitsance (E) is conserved pro- 

vided conjugate canonical coordinates are used. Denote energy E, 
RF-phase d, and angular revolution frequency in. Conservabion in 
energy time coordinates implies conservation in (S/w,d) space. Let 

Hence EZ(EIO) _ EI(&$) ~ 0r E(t+Tj= 
w(l+ T) 

w iJ1 
--------E(1) 

w(t) 

The area transforming properties of a mapping are given by the Ja- 
cobean determinant, J. Consequently, if we work in E, @ coordinates 

J = 4t+ T) Pz -=- 
w(t) PI 

where /5’ = 2 
c 

This property must be present in the equations of motion. When 
pd I 0, then J = 1. 

Single Particle Motion 

The exact equations of motion are diflerence eqwtions- solved by 
recursion to give a sequence. Successive members are labellcd by the 
integer subscript n. It is conceptually advantageous to calculate the 
states of the ensemble at equal turn intervals. 11 sinlplifies matters 
if we simulate a single bunch domain, --K 5 @ < +7c. We assume 
the other h - 1 bunches to be identical. The equations of motion are 
set up for operation below transition energy. Let the fractional turn 
increment, between cavities, be dm = l/Ncav. 

Firstly, the timeis advanced according to f,,+l = l,,f(‘L*ll,/v:)x 
dm, the bending field B,(t,.+l) calculated, and /jJ,yI, rj5, etc updated. 
Each of the particles has some energy c = E - E, wlnlive to the syn- 
chronous particle. For every macro-particle t,hr following algorithm 
applies. 

At an accelerating station, thca nnrrzy changes tliscrete:y: 

D” 
e,,+j = n+i x F,~ + *P? [sin{+,,) -- sin(@ )] x din 

13; (‘2) 

The particles coast between accelrrating &ations, and the RF-phase 
accumulates : 

@ ,,+I = ‘pn - $$+,z+l] x rim - @+, - +‘f,) 0) 9 s 
This is the integral of &b,r~ from one cavity to thr next. ‘lYtr> last 
term of (3) represents the change of 4,. For the moment, the RE- 
error (&f) is assumed to be zero. These rquations constitute a first 
order symplectic mapping and are exact. Their behaviour is different 
from the differential equations used to represent them* Thr difference 
equations result in a distortion and rotation of the phase-space ellipse, 
and cnuse the synchrotron frequency n2, to be modulabrti at (roughly) 
29,. 

Motion with space-c!ia* 

There are various forces which act. on the lw,t:n cllhc:r lh;m those 
produced by the guiding electric and magnetic fields. They originate 
from the beam charge. and result in collective eirects. At present, 
only the space-charge force is modelled. The physics is outlined by 
Hofmann.3 The effects will be simulated by step-wise integration. 
Generally, the number of steps (N.,f) does not equal the number of 
cavities (Ncav). The mean beam energy is & = 7amncz. Let X(4) 
be the number of particles per unit rf-phase. The space-charge force 
acts continuously ; and during the (space-charge) step dn = l/N*,f 
produces an incremental energy change : 

--- x dn (4) 

Considerations 
The bunch is represented by N, mac.ro-particles, which are binned 

into Nb sub-intervals of [-T, +K] to give a histogram representation 
of the bunch shape X‘. The techniques of Lagrange assignment and 
interpolation are used to hasten computations. Details are given 
by Koscielniak.4 A’ is smoothed by fitting of a Fourier series, and 
the harmonic components recombined to give the derivative dX/dQ. 
Smoothing is accomplished by truncating the harmonic series to some 
value Nh 5 Nb/2. The choice of Nb, NsCf and Nh are related issues. 
Consideration of a coasting beam suggests that N, > Nf. In this 

case, statistical fluctuations go as Jxx; unless this is of order 
1% smoothing is required. Thus, the length scale for variations in X 
is set by the harmonic cut-off ,li,,. If we believe variations of X’(Q) to 
be real on a length scale L = n/Nh, then particles must move much 
less than L during each time-step. In fact, it is adequate to make 
the phase step-length l/4 of the wavelength of variations in X. The 
maximum rate of phase-advance for particles within au RF-bucket 
is 2f12., as occurs on the separatrix at @ = 4#. Combining these 
observations, gives the minimum number of space-charge integration 
steps per turn : 

iVsrf N 16 X .w,, x : = lGu”-k.& (5) 
3 
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Conservative motion -- 
Motion under space-charge is derivable from a. IEamiltonian. This 

has two consequences. (1) The system conserves the sum of kinetic 
and electromagnetic energy. Thus whenever the parlicle Ii& arc in- 
cremented (due to space-charge), h(e) and space-charge energy must 
also be updated. If this practise is not adopted, non-physical ch:tnp. 
ings of the particles results. (2) The system ie Liouvillian and the, 
integration technique must be symplectic. Such ranonical integrators 
have been considered by Ruth.” Because space-charge acts cnntinu- 
ously, a symmetric Znd order symplectic mapping is appropriate. 

Canonical integrator 
-The algorithm is easily understood when presented formally. Let 
the initial and final states be (ql,p,) and (q~,p~) respectively. and 
the time-step he At. 

Let H= g-i-V(*,t) 
BH BH ; 4zz ; p--& 

The algorithm is: 

Qz = 41 -t PlW2 

P2 = p1 - -&V(qz,At/2) x At 

92 = qz + pz.Atj2 

The force is evaluated at the midpoint of the time step. Often sev- 
eral space-charge integration steps are required during the time for 
the synchronous particle to travel between adjacent cavities, that is 
N,crINx.v > 1. 

Phase and radial damping loops 

Some of the design features of damping loops including delays are 
presented by Xoscielniak.6 The starting point is the phase equation 
(I). The last term (#?f) is the extra phase-advance due to damping 
loops; we assume that it can be set in a controllable manner. The 
ideal phase loop control signal is @a = @J,,~I - 4,. The radial loop 
control signal is (Ea -. E,,). The frequency error is: 

-&‘vf /an = Fo(Eb - Es) + Go(%,,,j - 9%) . (6) 

These choices give standard phase and radiai loop control, leading t,o 
the equation: 

~+Go!%+(~ f qqeeir Cos(~~) x *g = 0 . (7) 

We have assumed the control signals are applied at the instant 
they are measured. Suppose the energy error (Eb,s = Eb - E,) and 
phase error (ip i = @b,rJ - d*) are measured between every cavity 
crossing, and a series of the ordered pairs stored in a first-in first-out 
memory. Using the (n - ,)” pair to control the RF at. the nth cavity 
crosfiing, amounts to introducing a time delay of k x rl/Ncav. 

Algorithm for motio; 
Let the superscript i denote individual particle values. Using the 

phase advance defined in (6), the algorithm including delay is: 
(a) Find average energy (I$,’ = < ti >,,) and mean phase deviat,ion 

(@F =< Ip’>, -4;) and store them. 
(b) Integrate individual particle phases as for a normal traversal 

between cavities. 
(c) Find the additional change 4,/ due to the damping-loop sig- 

nals: 
-A+,$ = G&J~~~ x dm + FoE>fL x dm 

(d) For all the macro-particles perform t,he mapping : @ =+ Cp’ C 
A&f. 

Phase-Space Painting 

By painting it is meant that during the injnct.ion, ihe ccntre of the 
micro-bunch emittnncc is moved over the phase-plane in a controlled 
manner. LONGlD has the option to acc.umulate macro-particles and 
to simulate longitudinal painting. Strategies for phase-spare painting 
are discussed by Koxirlnisk.7 

Verification in ISIS - ..-- ” 

The bunch shape is direc.tly related to the disposition of particles 
in phase-space. Verification of LONGlD centred upon comparing a 
continuous sequence of experimentally measured hunch-shapes with 
those predicted by simulation. Sh apea were recorded in the ISIS 
synchrotmn (at Rutherford Laboratory) using a LeCroy transient 
digitiser (sampling at 200 MHz) and acheiving a resolution of 3O of 
&phase. 5.3 x lOI protons are injected at 70 MeV into a ring of 
26 metre radius, and this corresponds to siguiflcant space-charge. 
The synchrotron cycles at 50 Hz, and ejects beam at 800 MeV. The 
synchrotron frequency is low, and it is permissable to use one space- 
charge step per cavity crossing. 

The measured and computed bunch shapes are found to be in 
one to one correspondence over the first millisecond of acceleration. 
This implies that the difference of synchrotron frequencies between 
experiment and computation is An./Q, = 10wz. Voltage, phase 
and timing errors combine making it unreasonable to expect exact 
correspondence at later times. Figures l(a)-(b) show representative 
examplea from the bunch-shape sequence. Experimentat results are 
to the left, and computed to the right. 

KAON hetory 

LONGlD has been used to study the TRIUhlF KAON Factory6 
suite of rings. The A and B rings each hold 1.3~ 1Cl’3 protons, and the 
C, D and E rings 6.5 x 10 13. The respective machine radii are 34 m 
and 170 m. These machines have high synchrotron frequencies, and 
so require several space-charge integration steps per cavity crossing. 
A preliminary exercise9 was to inject a stationary ensemble.” ‘This 
was transported from 450 MeV to 30 GeV with 0.1% loss. The rf- 
voltage requirements were 650 kV per turn in the Rooster and 2.5 MV 

in the Driver ring. 
More intriguing hds been a study of accumulation in the A ring. 

Beam is delivered from a cyclotron to a storage ring by He injec- 
tion. Filling is limited to 20 ms. During this time, the first injected 
beam strikes the stripping foil many times, degrading the transverse 
emittances. The number of foil traversals is reduced if the beam 
is injected off-energy, so as to produce an annulus in phase-space. 
The computer simulations suggest this distribution to be unstable. 
Qualitatively, the annulus evolves cyclically into a crescent and then 
back to an annulus. The explanation is relatively simple. A parti- 
cle phase-space distribution with exact circular symmetry produces 
an anti-symmetric space-charge voltage and is stable. However, due 
to injection there are unequal numbers of particles on either side of 
the annulus. This imbalance produces an asymmetric space-charge 
voltage. Thus s1, is lower where the line density is highest. As a 
result there is a net transfer of particles from low to high density. 
This enhances the difference of synchmtron tune and leads t.o further 
transfer. Eventually the annulus is replaced by a crescent. The de- 
pendence of it, on amplitude allows the crescent to stretch out until 
an annulus is formed. Figures 2(a)-(b) stow snap-shots from this be- 
haviour. The effect can be eliminated by varying the injection energy 
so as to fill the anulus, at the expense of increased foil traversajs. 



745 

ial 

Time = 375 p-eec after I3 

76k 76i4 i6 76h 17.0 
‘I’ime (us) 

Time = 912 peec after fi 

I 

! ! ! ! !I 
13.e KL4 13.6 13.8 14.6 

Time (ps) 

IXongitubinnl Qtjow Spat-~ (a) 

ag.--i--L-*li 1 

f , ,/ _,** ‘--... .%\ -- ------T 

(b) 

L 

-200 
* 

P”.SE IDCC., -t20L 

Fig 

[II 

PI 

[31 

[41 

[51 

PI 

PI 
181 
191 

1101 

1. Comparison of (a) experimental and (b) computed bunch shapes in ISIS. 
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Fig. Z(a),(b). Evolution of annular ensemble into crescent 
distribution in TRIUMF-A. 


