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Abstraet: Within perturbation theory the
formulas are derived expressing the time de-
pendence of emittance growth in an arbitrary
linear focusing system through the Fourier
coefficients of the additional nonlinear part
of the Hamiltonian. These coefficlents are
caleulsted for space-charge potential of a
beam with elliptical symmetry. As an example,
the expression is obtained for the Coulomb
emittance growth of the beam with waterbag
distribution in a short focusing system.

Emittance growth due to nonlinearity

The basic equations were derived by Wan-
gler et al. /1/ and Hofmann /2/ relating rms
emittance growth of a beam to its electric
field energy. However, these equations don’t
allow to study the time evolution of the pro-
cess, This time evolution was considered by
Anderson /3/ for particular case of the sheet
beam with laminar motion in a constant focu-
sing channel,

Our new approach within perturbation the-
ory investigates the internsl motlon of the
beam and from this obtains the explicit time
dependence of the rms emittance. Analysis is
performed for two-dimensionsl beams with el-
lipticel symmetry by introducing of the next
simplifications: 1) perturbations of the pa-
rticle trajectories are small; 2) the addi-
tionsl electric fields due to the coherent
oscillations are not taken into account.

We start our analysis with well-known
Sacherer's /4/ differential equations for rms
envelopes as functions of the distance 2
along the axis of a channel:
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where K 18 perveance;6‘=fziiw‘;6,=’<317 e d
and Yy are transverse ccordinates; sign < >
denots the averaging on the particle distri-
bution function; E_ai,n £ 1s rms emittence:
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The corresponding equations for the 1li-
near transverse oscillations of the partie-
les have the form (in the x plane):
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The solution of the system (1) is deter-
mined by the initial values of l%w and their
derivatives. Substituting this solution into
Eqs. (3), we are able to find the fundemental
solutions ¥ and ¥ (mign * dindicates the
complex conjugation) which determine the mo-
tion of individual particles.

*Fog‘the standart normalizing condition
(P -¥¥ =-2iW , where W is some positive
constant) the amplitude and phase of the fu-
ndamental sclutions are connected with rms
envelopes by the next formulas:
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Expressing the coordinates of a smingle
particle through the fundamental solutions,
we obtain:
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where C, is the complex amplitude of the os-
cillations; J, =ZWIC‘|"; P =a,+ £, ; f, =argcC,.

The real electromagnetic field acting on
the particles of a beam differs from the li-
near fields which are included into the ays-
tem (3). This additional field correasponds
to the additional part AH(X,Y4,%) of the Ha~
miltonian.

With the help of Eq.(5) we introduce the
canonical variables J - f. {action-phase)
and expand aH into the Fourier series oniﬁ
(arrow denots vector):
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Using tEF Hamilton's equations for the

variables J and f :
L\ o(aH) 8)



we derive the next system of the equations:
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The solution of the system (9) can be
found by use of the successive approximasti-
ons method:
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where I and f, are zero-order approxime-

and X, are first-order approxi-

tions; i
mations etec. -

Let us take ] equal to the initial
(unperturbed) value when % =0 and X, eg-
ual to

Xo=Fm* R, (11)

X.. is the initial value of the phase.

We calculate iterations (10) in Ref,/5/
and obtain the expression for rms emittance
growth of a beam with uniform distribution
on the initial phases.

In the first approximation af” =0 be-
cause < f, 7= (:)—(.47 =0 ,

In the second approximation we derive
the next general formulas for the dependence
of the emittance growth on the Fourier co-
efficients of the additional part of the Ha-
miltonien:
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where <.I'z>=§ﬁ'<Re[B;(_I',2)FTEI.SW (T#)]> T (13)

ro=2¢8, (TR+ L[5 ,(T2)>; (14)
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Emittance growth due to space-charge
nonlinearity
The additional part of the Hamiltonian
can be obtained by solving of Poisson's eq-
uation for a beam with rms envelopes defining
by Egs.(1).
The density in real space is

P(m,gg):yF(—ﬁw?—:):y F(T) an
» o a, 01 ° »
where p, 1s the charge density in the beam
centre; a,, are the beam envelopes; the fun-~
ction F  satisfies to the next conditions:
F(©)=15 F(@)=0 .

The power series expansion of F has a
form:
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The electrostatic field inside the beam
with elliptical symmetry of the charge den-

sity is /4/ o g
~ "F(o‘ns*a‘*S)
E,=237Po°»\0'515 e (S

o Yrat+syay+s)

Substitution of Eq. (18) into (19) and
integration of Eq. (19) yield the additional
Coulomb part of the Hamiltonlan. The ampli-
tudes of the Fourier harmonics are determi-
ned as follows /5/:

(19)
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y 4
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C: are binomial coefficients; I =max(J,, ).
The velues V,; (6,,6,) can be calculated
by use of the recurrence relations:

V :..__....2;_..- ’ v = ...____&..._.___ .
e (B.r8y) 7 % B (B 8y)’
(24)
1 Ve, . 1 WVey
(h (2e+1)8x 38, Voier= (2j+1)6, 38,

Substitution of the space-charge Fouriler
harmonics into the general formulas (12)-(16)
provides rather unwieldy expressions for the
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emittance growth of a beam with arbitrary
distribution in phase space.

Here we restrict ourselves by the rela-
tively simple case of waterbag digstribution.
Then for & short focusing channel with the
small nonlinear phase advance (AN« 1)
we derive:

Kl 1,0 1,0 4! 1,1 1.
g 2)= g5 {IEL I Re (EEL) THENI"
(25)
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where E; are the universal structure integ-
rals:

SR Jexp(i2d,)dE; E”:Sg explias)dE ;

(26)
1,0 ) - “ _ .
Euzofkw exp(idat, ol E | =°jgm expli2 (e 1A
values R_ equal to
_2Bs 28,46y . 488 ,
Rq,o— 3 (g‘_' g,)l ? R4,4_ (6“”6,)1 ( 7)

(A£; can be obtained by replacing of indexes)

For a round beam Eq.(25) becomes:
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AE (%) = ==—1El (28)
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where E= OS exp(«-‘lc(.w) dz .

In the focusing systems with the small
phase advance

o€ % 0,00139 (Kz)* . (29)

According to the Anderson's theory /3/
for a round beam, it can be found for small
wzZ (to 21 order in expreasion for t(p,%)

in notation of Ref./3/):

aE%0,00137 (K2)* (29)

The Eqs.(29) and (29)
good accuracy.

coincide with a

The results obtained here are valid
only for %«1 .

In the space-charge-dominated beams the
density profile undergoes significent chan-
ges in about one quarter of & plasma peri-
od /1/. Thus, for such beams our theory is
correct 1if
(30)
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