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Abstract: Within perturbation theory the 
formulas are derived expressing the time de- 
pendenoe of emittance growth in an arbitrary 
linear focusing system through the Fourier 
coefficients of the additional nonlinear part 
of the Hamiltonian. These coefficients are 
calculated for spaoe-charge potential of a 
beam with elliptical symmetry. As an example, 
the expression is obtained for the Coulomb 
emittance growth of the beam with waterbag 
distribution in a short focusing system. 

Emittance growth due to nonlinearity 

The basio equations were derived by Wan- 
gler et al. /I/ and Hofmann /2/ relating rns 
emittance growth of a beam to its eleatric 
field energy. However, theae equations don't 
allow to study the time evolution of the pro- 
cesa. This time erolution was considered by 
Anderson /3/ for particular cane of the sheet 
beam with laminar motion in a constant focu- 
sing channel. 

Our new approach within perturbation the- 
ory investigates the internal motion of the 
beam and from this obtains the explicit time 
dependence of the rma emittance. Analysis is 
performed for two-dimensional beams with el- 
liptical. symmetry by introducing of the next 
simplifications: 1) perturbations of the pa- 
rticle trajectories are small; 2) the addi- 
tional electric fielda due to the coherent 
oscillations are not taken into account. 

We start our analyai8 with well-known 
Sacherer's /4/ differential equations for rms 
envelopes as functions of the distance z 
along the sxia of a channel: 

K (gJ’ + zx,r ( FE) t& - $- - - x&f ug,+ by) 
= 0, (I) 

where K ie perveance;g,=m ; &,=iq- ; 2 

ancl Li)- are transverse coordinates; sign < > 
denots the averaging on the partiole diatri- 
bution function; EI ntr= E ia rma emittance: 

~'=<5x><x5-(xx'?L . (2) 

The oorreaponding equations for the li- 
near transverse oscillations of the partic- 
lea have the form (in the x plane): 

K 
X'+ K,(X)X- zg<Cg,+g,) z = 0 . 

The solution of the system (1) is deter- 

mined by the initial values of 6*-,, and their 
derivatives. Substituting this solution into 
Eqs. (31, we are able to find the fundamental 
solution¶ Y and G (sign * indicatea the 
complex conjugation) which determine the mo- 
tion of individual particles. 

For the standart nozwLl.izing condition 
(Ipi'- G'+"=-ZiW , where lcl is some positive 
constant) the amplitude and phase of the fu- 
ndamental solutions are connected with ms 
envelopes by the next formulas: 

IVl,.i=gxyf$- i 
*E 

~,ga~'f'~,r~ F d% . (4) , . 
%Y 

Expressing the coordinates of a single 
particle through the fundamental solutiona, 
we obtain: 

2 = cn’px+ Es:, = f F gx cdq , (5) 

where C, is the complex amplitude of the oa- 
cillations; 3, =2wlCIlL~ 4),=d,+ ;', ; f, rargc,. 

The real. electromagnetic field aoting on 
the particles of a beam differs from the li- 
near fields which are included into the sys- 
ten (3). This additional field corresponds 
to the additional. part Ati(m,Y,Z) of the Ha- 
miltonian. 

With the help of Eq. (5) we fntroduoe the 
oanonioal variables ? -T (action-phase) 
and expand Ati into the Fourier series on+ 
(arrow denots veotor): 

2x 2s 

where G,~~x)',&L lj Ati exp+%q dqy. (7) 
00 

Using the Hamilton's equations for the 
variables J' and 7 : 

?I- JhH'; ‘;i'= aiftH' , 
- aT a7 
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Emittance growth due to space-charge 
nonlinearity 

The additional part of the Hemiltonian 
can be obtained by solving of Poisson's eq- 
uation for a beam with mm envelopes defining 
by Eqs.(l). 

The density in real space is 

we derive the next system of the equations: 

t 3 = -;$ZG, +)expm;;ij) 

j’=f 2$e,, c&F, (9) 

The solution of the system (9) can be 
found by use of the successive approximati- 
ons method: 

?= T+ i-,+ i.+ ,., ; J=$.+&+&+... (IO) 

where 7 end f0 are zero-order approxima- 

tions: I', and J4 are first-order approxi- 

mations etc. 
Let us take ? equal 

(unperturbed) value when 
ual to 

to the initial 
X 10 and jfe eq- 

(11) , 

where 
‘2Gt,o -.., k~,;t, =j fl’r, n)dg ; 

Kn ia the initial value of the phase. 
We calculate iterations (10) in Ref./5/ 

and obtain the expression for rms emittance 
growth of a beam with uniform distribution 
on the initial phases. 

In the firat approximation A&& =O be- 
cau*e(?,> =<)(,T =O . 

In the second approximation we derive 
the next general formulas for the dependence 
of the ernittanoe growth on the Fourier co- 
efficients of the additional part of the Ha- 
miltonian: 

AEEy = 

where cT,=~~<~e[B,ti,e)iiDP, (?,%)I> ; 

6, :j, fT,&xp ria~+Xl]& ; 
0 

%;=!a? , ~m(?i)exp[i%z+~)l dZ. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

where 9, is the charge density in the beam 
centre; a x,'d are the beem envelopes; the fun- 
ction F satisfies to the next conditions: 
F (o)=l; F Cl)=0 . 

The power series expansion of F has a 
form: 

F(T)=: -f +;+$)' 
e-0 e Qx Y 

The electrostatic field inside the beam 
with elliptical symmetry of the charge den- 

(18) 

sity is /4/ 
-F(-$-+y 

~K=~np.~~~rZ$ 
gL ) 

OS+' *ycS ds 
0 ca: +S)'m; +s) 

Substitution of Eq. (18) into (791 and 

integration of Eq. (19) yield the additional 
Coulomb part of the Hamiltonian. The ampli- 

(19) 

tudea of the Fourier harmonias are determi- 
ned as follows /5/: 

G&x)= Kf R,,4; J:‘IJ;', (20) 

where R, ( gx ,&I= Cml:-,, V,,,, &y* By* ; (21) Y 

A”; = -3 (4T \@-y;;+ my) c;;;- c;;,n’ ; (22) 
e 

$.jFmdT ; (23) 
0 

~1 are binomial aoefficients; IO =!mx ( J,,, I * 
The values V, j (&,,&,> can be calculated 

by use of the reckrence relations: 

v,o= 2 
’ 6*(&+6,) ; ’ 

v,,= 2 
6,( 6x+ gy) ; 

(24) 

1 3. v, 
%+t.j=-(~ aA ) 

1 
t,it4 = 

-- av,, 
(2jw6, as, * 

Substitution of the space-charge Fourier 
harmonics into the general formulas (12)-(16) 

provides rather unwieldy expressions for the 



742 

emittance growth of a beam with arbitrary 
distribution in phase space. 

Here we restrict ourselves by the rela- 
tively simple case of waterbag distribution. 
Then for a short focusing ahannel with the 
small nonlinear phase advance (I~~~w)l<< 1) 
we derive: 

+4lEy flE;;y\ , 
(25) 

;;: 
where E, are the universal. structure integ- 

rala: 

values R, equal to 

zgr zg*+g, . R 4a, 
R '1,o =-r cg*t tz,Y ' 4,4 = (&,+ &JX 

w7) 

(a&: can be obteined by replacing of indexes). 

For a round beam Eq.(25) becomes: 

(28) 

where E .= jLip ( i4dJ dii . 
* 

In the focusing systems with the small 
phase advance 

aEZ = o,oowuKd. (29) 

According to the Anderson's theory /3/ 
for a round beam, it can be found for small 
LLI;E (to 1% order in expression for Z(g,Z) 

In notation of Ref./3/): 

A&'= 0,00137 o(d. (29)’ 

The Eqs.(29) and (29)' coincide with a 
good accuracy. 

The results obtained here are valid 

only for $ <<I l 

In the space-charge-dominated beams the 
density profile undergoes significant chan- 
ges in about one quarter of' a plasma peri- 
od /I/. Thus, for such beams our theory is 
correct if 

ZK -. , where Wizo Q (30) 
* Y 

/I/ 

/2/ 

/3/ 

/ 41 

/5/ 
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