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Abstract 
Reference 

We present a third-order numerical 
integration method applicable to particle 
tracking for accelerators with small radius of X 
curvature. The present method considers the 
nonlinearity due to the small radius of 
curvature in equations of particle motion in a 
bending magnet and consists of explicit and 
symplectic transformations. 

Chromaticity and stability limit of the 
betatron oscillation in an accelerator are 
evaluated and the results are compared with Fig.1 Curvilinear coordinate system 
those obtained by the conventional linear 
matrix method for bending magnets. coordinates shown in Fig.1 by the following 

Hamiltonian H : 
/ \I 

Introduction (1) 

where 4 is the charge; p, the radius of 
curvature: P, the particle momentum; and PX and 
Py are momenta along the x and y directions, 
normalized by the particle momentum P. A, is 
the vector potential of the magnetic field and 
expressed as follows: 

where H,, K, and S are the dipole, quadrupole 
and sextupole field strengths. Since P, and 
P,‘%l, the Hamiltonian H can be approximated as 

For accelerators with small radius of 
curvature, the nonlinearity in the equations 
of particle motion in a bending magnet is 
expected to be important for beam dynamics. 
For example, it has been pointed out that 
chromaticity calculation methods based on the 
linear transfer matrix approximation for a 
bending magnet are not correct for small 
acceleratorsr. Similarly, it is expected that 
this nonlinearity should also be considered in 
particle tracking for analysis of the dynamic 
aperture. In particle tracking, usually 
radiation is neglected and the particle motion 
is described by Hamilton's equation of motion. 
Therefore, a particle tracking method is 
required to satisfy the symplectic condition:! 
for the Hamiltonian system. Numerical 
integration is considered to be the most 
straightforward way for particle tracking. 
Ruth3 has developed a numerical integration 
method satisfying the symplectic condition. 
However, there is not a numerical integration 
method which is applicable to the Hamiltonps 
equation including the nonlinearity due to the 
small radius of curvature and satisfies the 
symplectic condition. 

In this paper, we present a numerical 
integration method considering the above 
nonlinearity and satisfying the symplectic 
condition. The present method has an accuracy 
up to the third order of the integration step 
width in Taylor’s expansion. As a numerical 
example, the present method is applied to 
particle tracking for an accelerator with 
small radius of curvature. The results are 
compared with those obtained by the 
conventional linear matrix method for a 
oending magnet. 

z(P2x+P2y) 

2P 
(3) 

In the case of p%x,the last kinematic term on 
the right hand side, xiP,2+P,2)/2p can be 
neglected. In this case, if the magnetic 
field is a dipole, that is, S=K=O, particle 
motion can be described analytically. In the 
case of a small radius of curvature. however, 
the last kinematic term on the right'hand side 
of Eq.(3) cannot be neglected. Then, the 
equations of motion become nonlinear and are 
expressed as follows: 

dx ari * -- 1 + * I’% , z-=apr-\ p ( -) (4) 

dPx -=- ~-qaAs+~-PZ~+P2y 
ds ax Pdx p 2P ’ 

(5) 

dlv a11 
-= It-E‘Py , 

iii = c7Py c j 
6) 

e 
dPy _ ali 4 aAs -=-- 
ds ay Pay (7) 

A Particle Trackinq Method In order to solve these equations of motion, 
we developed a numerical integration method 

The motion of a charged particle in a having an accuracy up to the thi-rd order of an 
lending magnet can be described in curvilinear integration step width in Taylor's expansion. 
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The present numerical integration method 
employs the following transformations. 

r‘+,=ri+(l+~)[koiP~~+~(c~P~~i+d~P2yi)+~qPIiP?yiJ , 
(8) 

Y,+,=Y,+( 1+y f ha, PYt+ - diPri Pyi + 1 eiPli Pyi f ) , (9) 

k3 ‘i 
- j;PliP’yi , 

P 

(IO) 

P yi+l=Pyt+‘$F~ (+r+la~,+l 1 . (11) 

where ai, bi, Cir di and ei are constants, and 
h is the step width of integration. FX and Fy 
are functions defined as follows: 

q?j$L-~ , (12) 
P 

(13) 

It is easily shown that the above 
transformations satisfy the symplectic 
condition2 to conserve the canonical character 
for HamiLton's equations of motion. In the 
above transformations of Eq.(8)-(ll), it is 
noteworthy that the new coordinates x,.+~, y,+* 
and new momenta Pxi+l, Pyr+r can be explicitly 
calculated. Then, by successively 
substituting and expanding up to the third 
order of the step h for Eqs.(B)-(ll), the 
coordinates z,, s; and the momenta Rq, Py., can 
be expressed by initial values of x,, ylr Pr1 
and PYf * The obtained formulae for new 
coordinates and new momenta should be idential 
with the TaylorIs expansion up to the 
order of h. Comparing each term of 

tht;: 

expanded formulae and Taylorls expansions, 
fifty nine relationships, many of which are 
dependent on each other, are obtained. The 
relationships for the constants of a, and hi 
(i=l,2,3) are obtained from the terms up to the 
third order of h as follows: 

a,+a2+a3=1 , b,+b,+b,=l , 

azbl+ag( b,+b,)= f , 
1 

a,a2b,+a,n3( b,+ h2)+a2a3b,= ; , (14) 

u,b,+ (a,+a,)b,+b = L 
3 2 

There are five equations for six unknowns. A 
set of constants of rrl=7/24, a2=3/4, as=-l/24, 
bl=2/3, &=-Z/3 I and b3=1 are chosen, by 
referring to the relationships shown in 

Ref.[3). Furthermore, setting both er and ez 
as zero, the constants of c,, d, (i=1,2,3) and e;j 
are determined uniquely from the rest of the 
relationships, which are omitted here, as 
follows: 

4165 27 6215 

5= 15744 
, y-32 , c3=-- 

15744 

833 

d2-; 
2083 99127 d=----- 

* 28800 , , d3=-- 28800 , e=------- 3 2361600 

Using these constants, we obtain the third- 
order explicit integration scheme satisfying 
the symplectic condition. 

Numerical Example 

As a numerical example, the present method 
was applied to an accelerator, which consists 
of four superperiods of the FOHO unit cell. 
The unit cell is shown schematically in Fig.2. 
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Fig.2 FODO unit cell (dimensions:m) 

The radius of curvature p is about 1.2m and 
the magnetic field of the bending magnet is 
assumed to be purely dipole. Horizontal tune 
VX and vertical tune yY are 2.75 and 2.25. 
Field strengths normalized by B,p are -3.87 
l/m2 for the focuing quadrupole QF and 4.49 
l/m2 for the defocusing quadrupole QD. 
Momentum dependences of the horizontal and 
vertical tunes were obtained from the tracking 
results by the present and conventional linear 
matrix methods for bending magnets. In these 
methods, horizontal and vertical emi ttances 
were assumed to be 1 nmm-mrad. These results 
are shown in Fig.3. For comparison, results 
obtained by the semi-analytical formulae of 
JIger and MBhl* for chromaticities which 
consider the effect due to the small radius oE 
curvature are also shown in the fiqure. It is 
found the present results agree- well with 
those of J&ger and M6hl. Two families of 
sextupoles SF and SD were used for 
chromaticity correction. The field strengths 
of the sextupoles SF and SD normalized by B,p 
are determined as 21.1 l/m3 and 27.9 l/m3, 
respectively, based on the results of the 
present and the Jgger-MLihl methods. 
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Fig.3 Momentum deviation AP/P vs. horizontal 
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Stability limits of the betatron oscillation 
in the lattice shown in Fig.2 were analyzed by 
the present and conventional methods. 
Separatrices at a Eocusng quadrupole position 
obtained by tracking in one degree of freedom 
are shown in Figs.4 and 5 for each tracking 
method. A difference is seen between the 
stability limits obtained by the present and 
conventional linear matrix methods. It seems 
that the stability limits are determined by 
the third-order resonance for both cases. 
Then, the frequency spectrum of the betatron 
oscillation was analyzed for the case of the 
initial values of x=27mm and Px=O. While the 
main frequency component by the conventional 
method is about 2.74, the present method 
results in the main frequency component of 
2.69, which is nearer the third-order 
resonance. Accordingly, the larger tune shift 
in the present method, which is due to the 
effect of the nonlinear kinematic term, caused 
the smaller stability limit. These results 
show that the nonlinear kinematic term should 
be considered in particle tracking for small 
accelerators. 

I Initial Conditions 

I 
x =27mm 
Px=O 
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Fig.4 Phase space trajectory by the present 
method 
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Conclusion 

A third-order numerical intergraticn method 
consisting of symplectic transformations was 
presented for application to particle tracking 
in accelerators with a small radius of 
curvature. In the present method, the 
nonlinearity in the equations of motion due to 
the small radius of curvature was considered. 
Chromaticities and stability limits of the 
betatron motion of an accelerator were 
evaluated by the present and linear matrix 
methods and it was shown that the nonlinearity 
due to the small radius of curvature should be 
considered in particle tracking. 
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