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Abstract 

The longitudinal and transverse coupling impedan- 
ces are shown for an infinite pipe loaded with a 
finite number of cylindrical resonators or radial 
lines. The impedances are calculated with the code 
ICYRP based on a field matching technique which was 
given elsewhere. Special emphasis is put on the 
high-frequency behaviour of the impedances. The lon- 
gitudinal impedance behaviour fits in very well with 
an asymptotic formula given elsewhere. In the case 
of a chain of resonators the resonances found for an 
infinite periodic structure are already reproduced by 
as few as 10 to 20 resonators. 

Introduction 

The calculation of the impedances of a chain of 
cylindrical resonators is an important problem from 
both the practical and theoretical points of view. 
In practice it can represent such different objects as 
an RF cavity, a small gap at a vacuum chamber flange 
or a bellows. On the other side it is one of the few 
problems which can be treated theoretically either 
with asymptotic or semi-analytical methods. It is 
therefore well suited for studying different aspects 
of the impedance such as the dependence on the size of 
the object, the high-frequency hehaviour and the 
interference between several objects. 

A very nice example of an asymptotic method is 
the high-frequency solution derived in [I]. Semi- 
analytical methods are mostly mode-matching techniques 
with two possible matching surfaces: the cross- 
section apertures between resonator and pipe or the 
cylindrical surface between the pipe region and tha 
outer resonator region. The matching on the cross- 
section has first been chosen for the case of rectan- 
gular structures [ 2: 
ces [S, 4, 51. 

and later for cylindrical devi- 
The matchinq on the cylindrical sur- 

face-was done for the case of pipes with finite length 
6] or for the case of an infinite periodic struc- 

ture [7]. In both cases a discrete set of eigenmodes 
exists in the pipe as well as in the resonator region. 

For infinite pipes or a finite number of resona- 
tors the problem is more complicated in the sense that 
a continuous spectrum of waveguide modes exists in the 
3ipe region. This approach was used to calculate the 
longitudinal [ EI] and transverse [ 91 impedances in t.ha 
3ase of a single resonator or radial line and was 
later extended to a finite number of objects [IO]. 
decently the same technique was applied in order to 
derive an analytical expression for the high-frequency 
limit of the longitudinal impedance [II]. 

In the paper we will present some new numerical 
results obtained with the code ICYRP [IO] which is 
iased on this mode-matching technique. Hereby 
special emphasis is put on the high-frequency beha- 
iiour of the impedances and on the case of several 
.esonators as compared to a single resonator or an 
.nfinite periodic chain. 

Description of the problem 

The problem dealt with is a point charge travel- 
ing parallel to the axis of an infinite pipe loaded 

with a finite number of cylindrical resonators or 
‘adial lines (Fig. 1). In order for such a structure 
o be treated with a mode-matching technique it is 
#eparated into subregions. In the pipe region I the 

fields consist of the source fields, taking into ac- 
count the point charge and a continuous spectrum of 
waveguide modes describing the fields scattered by the 
inhomogeneities. In the resonator regions Iii, a 
discrete set of waves is present travelling radially 
outward and inward (in the case of radial lines only 
outward travelling waves exist). The fields of the 
different sub-regions are matched on the common inter- 
faces p = a, iL < z 6 il. + 7.q. The result is an in- 
finite set of inhomogeneolrs linear equations for the 
field expansion coeffirients. The set of equations 
is solved numerically after truncation by a code cnl- 
led ICYRP (Impedances of Cylindrical Resonators with - 
Pipes). 

-- - 

In some special cases such as short gap lengths 
or low frequencies it is sufficient to consider only 
the first mode in which case approximate formulae can 
be derived . The mathematical treatment is given in 
[lfl] and will not be repeated here. 

Impedances of Single Objects 

For all results given in the following the desig- 
nations longit.!ldinal and transverse refer tn fields 
with azimtlthal mode numbers M = 0 and M : ‘1 respec- 
t ively . The dimensions chosen correspond to an 
average 5 Gtiz SI AC acceleratinq cell. 

As a first example the impedances of a radial 
line (Figs. 2 and 3) are shown. In this case the im- 
pedances are essentially caused by the radiation into 
the line and they do not show resonant behaviour as 
for cavities. The real part of t~he longitudinal im- 
pedance increases rapidly from zero frequency onward, 
reaches a maximtun around h/Z a 2g, and decays. At 
each cut-off frequency ka, = nna/2g, n q 0,1,2...of 
the radial line, a new mode starts propaqating and the 
impedance increases correspondingly. At the cutoff 
frequencies of the pipe kac = jon, n : 1,2,.. .the 
impedance is exclusively due to radiation into the 
line. The transverse impedance shows similar beha- 
viour, except that it starts with zero slope at. zero 
frequency. 

In a resonator (Figs. 4 and 5) the sit,uation is 
quite different. Radiation occurs only into the 
pipes with the cut-off frequencies kac q j,l and 
ka, = j’,, for the longitudinal and transverse cases 
respectively. Relow cut-off the real part of the im- 
pedances consists of 6-function resonances. The ima- 
ginary part behaves 1 ike a reactance. Above cut-off 
the resonances have a finite bandwidth owing to the 
radiation into the pipes. Some modes, especially 
those below cut-off, agree well with the modes of a 
closed resonator. Others are heavily degraded and/or 
shifted in frequency owing to the beam pipes. In 
general, the longitudinal resonances are shifted up- 
wards in frequency since the pipes correspond to a re- 
duction of the capacitance, whereas the transverse re- 
sonances are shifted downwards in frequency because 
the fields are essentially magnetic in the pipe 
region, thus increasing the inductance. 

High-frequency Behaviour 

In order to study numerically high-frequency 
behaviour it is easier to consider a radial line. .4t 
first, we can excite either even or odd modes when 
selecting the cut-off values ka, = nna/Zg. Then, 
the system of linear equations reduces to half the 
order and we can go up to twice the frequency. This 
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has been done in [?o] for the longitudinal impedance 
and a clear decay with w-l/* was found between 
ka z IO and ka = 100. Secondly, the behaviour is 
smoother than for a resonator and allows a direct 
visualization of the decay with frequency. 

But the proper way to study the w dependence is 
the integration over bins, although it is quite 
computer-time consuming. This has been done here. 
Again the real part of the longitudinal impedance 
shows U-I/~ behaviour in the case of a radial line. 
As expected the same behaviour was found for a resona- 
tor (Fig. 6). The imaginary part has the same beha- 
viour and about the same magnitude, only 1% smaller. 
In the graph are also shown values obtained fran an 
asymptotic formula derived in [13,11]. They gree 
very well with our numerical data, and we can write 
the asymptotic form OF the lonqitudinal impedance as 

zL 
2, 2s ____ - (1-j) ?;; a 

T nka ’ 
Zo free space impedance 

I~~,,“i~~-~f,“P’9:‘rs~~~~~2 of the transverse impedance, 
as expected. 

Chain of Resonators 

Often it is of interest how a distinct resonance 
shifts or how the total impedance changes when going 
from a single resonator to many resonators. This is 
of particular interest since it would allow us to de- 
cide from what number on an infinite periodic struc- 
ture is a good approximation. 

Figure B, taken from [IO], shows the real part of 
the longitudinal impedance of a very small resonator 
as is used for bellows. The single undulation has a 
broad-band resonance located at ka = 4.7. This cor- 
responds to a h/4 resonance of the radial line. With 
an increasing number of undulations the resonance bc- 
comes broader owing to coupling between undulations, 
and is shifted in frequency. For more than 20 undu- 
lat ions, a real isolated resonance is formed at 
ka = 3.45. This resonance becomes smaller and smal- 
ler in bandwidth, although the losses per undulation 
stay constant. Finally, the resonance becomes 6- 
function-like for the case of an infinite periodic 
structure. The resonance frequency ka = 3.45 is that 
of the space harmonic, which haa a phase velocity 
equal to the velocity of light. 

for a large resonator the situation is very much 
the same apart from the fact that the resonances are 
spaced much more closely. Fig. 9 shows the case of a 
set of 20 resonators as used in fig. 4. The reso- 
nances of a single resonator are narrowed in bandwidth 
and shifted towards the values of an infinite periodic 
structure. The process of narrowing the bandwidth, 
i.e. increasing the Q-value, is even more impressively 
viewed by the imaginary part. 
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Fig. 1 Point charge travelling parallel to the axis 
of an infinite pipe loaded with cylindrical resonators 
(upper part) or radial lines (lower part). 

Fig. 2 Real part of the longitudinal impedance of a 
radial. line (gemetry of Fig. 1 with I = 1, 
a L 11.63 mm, 2g = 29.15 mm, y q 104). 

Fig. 3 Real part of the transverse impedance of a 
radial line (parameters of Fig. 2). 
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Fig. 4 Longitudinal impedance of a resonator 
(geometry of Fig. 1 with I = 1, a = 11.63 mm, 
2g = 29.15 mm, b = 41.3 mm, y = 1041. 
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Fig. 5 Real part of the transverse impedance of a 
resonator (parameters of Fig. 4). 
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Fig. 6 High-frequency dependence of the longitudinal 
impedance of a resonator (averaged aver intervals 
Aka q 1, parameters of Fig. 4) ooo data from asymp- 
totic formula[ll,l3]. 

c:- 
-7. 

;- 

IO2 y 

2,&I_ULLLUU-L 
3. lo. ka -- 5. 

Fig. 7 High-frequency dependence of the transverse 
impedance of a resonator (averaged over intervals 
Aka = 1, parameters of Fig. 4). 
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Fig. 8 Real part of the longitudinal impedance of a 
set of resonators <geometry of Fig. 1 with a = 15 mm, 
2g = 2 mm, b = 19 mm, L = 4 mm, y q 106!. 
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Fig. 9 Longitudinal impedance per resonator for the 
case of a chain of 20 resonators (geometry Fig. 1 with 
I = 20, a = 11.63 mm, 
b = 41.3 mm, y q 104). 

2g = 29.15 mm, L = 35 mm, 
The arrows 4 indicate space 

harmonics in an infinite periodic structure with phase 
velocity equal 
KN7C [IZ]. 

to velocity of light (calculated with 


