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COUPLING IMPEDANCES OF A SET OF RESONATORS
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Abstract

The longitudinal and transverse coupling impedan-
ces are shown for an infinite pipe loaded with a
finite number of cylindrical resonators or radial
lines. The impedances are calculated with the code
ICYRP based on a field matching technique which was
given elsewhere. Special emphasis is put on the
high-frequency behaviour of the impedances. The lon-
gitudinal impedance behaviour fits in very well with
an asymptotic formula given elsewhere. In the case
of a chain of resonators the resonances found for an
infinite periodic structure are already reproduced by
as few as 10 to 20 resonators.

Introduction

The calculation of the impedances of a chain of
cylindrical resonators is an important problem from
both the practical and theoretical points of view.
In practice it can represent such different objects as
an RF cavity, a small gap at a vacuum chamber flange
or a bellows. On the other side it is one of the few
problems which can be treated theoretically either
with asymptotic or semi-analytical methods. It is
therefore well suited for studying different aspects
of the impedance such as the dependence on the size of
the object, the high-frequency behaviour and the
interference between several objects.

A very nice example of an asymptotic method is

the high-frequency solution derived in [1]. Semi-
analytical methods are mostly mode-matching techniques
with two possible matching surfaces: the cross-

section apertures between resonator and pipe or the
cylindrical surface between the pipe region and the
outer resonator region. The matching on the cross-
section has first been chosen for the case of rectan-
gular structures [2] and later for cylindrical devi-
ces [3, 4, 5]. The matching on the cylindrical sur-
face was done for the case of pipes with finite length
(6] or for the case of an infinite periodic struc-
ture {7]. In both cases a discrete set of eigenmodes
exists in the pipe as well as in the resonator region.

for infinite pipes or a finite number of resona-
tors the problem is more complicated in the sense that
a continuous spectrum of waveguide modes exists in the
Jipe region. This approach was used to calculate the
longitudinal [8] and transverse [9] impedances in the
case of a single resonator or radial line and was
later extended to a finite number of objects [10].
lecently the same technique was applied in order to
lerive an analytical expression for the high-frequency
Limit of the longitudinal impedance [11].

In the paper we will present some new numerical
esults obtained with the code ICYRP [10] which is
rased on this mode-matching technique. Hereby
special emphasis is put on the high-frequency beha-
/iour of the impedances and on the case of several
‘esonators as compared to a single rescnator or an
.nfinite periodic chain.

Description of the problem

The problem dealt with is a point charge travel-
ing parallel to the axis of an infinite pipe loaded
rith a fipite number of cylindrical resonators or
‘adial lines (Fig. 1). In order for such a structure

o be treated with a mode-matching technique it is
eparated into subregions. In the pipe region I the

fields consist of the source fields, taking into ac-
count the point charge and a continuous spectrum of
waveguide modes describing the fields scattered by the
inhomogeneities. In the resonator regions IIj, a
discrete set of waves is present travelling radially
outward and inward (in the case of radial lines only
outward travelling waves exist). The fields of the
different sub-reqgions are matched on the common inter-
faces p = a, il < z < il + 2g. The result is an in-
finite set of inhomogeneous linear equations for the
field expansion coefficients. The set of equations
is solved numerically after truncation by a code cal-
led ICYRP {Impedances of Cylindrical Resonators with
Pipes).

In some special cases such as short gap lengths
or low frequencies it is sufficient to consider only
the first mode in which case approximate formulae can
be derived. The mathematical treatment is given in
{10] and will not be repeated here.

Impedances of Single Objects

For all results given in the following the desig-
nations longitudinal and transverse refer to fields
with azimuthal mode numbers M = 0 and M = 1 respec-
tively. The dimensions chosen correspond to an
average 3 GHz SLAC accelerating cell.

As a first example the impedances of a radial
line (Figs. 2 and 3) are shown. In this case the im-
pedances are essentially caused by the radiation into
the line and they do not show resonant behaviour as
for cavities. The real part of the longitudinal im-
pedance increases rapidly from zero frequency onward,
reaches a maximum around /2 = 2q, and decays. At
each cut-off frequency ka, = nma/2g, n = 0,1,2...0f
the radial line, a new mode starts propagating and the
impedance increases correspondingly. At the cutoff
frequencies of the pipe ka, = jon, n = 1,2,...the
impedance is exclusively due to radiation into the
line. The transverse impedance shows similar beha-
viour, except that it starts with zero slope at zero
frequency.

In a resonator (Figs. 4 and 5) the situation is
quite different. Radiation occurs only into the
pipes with the cut-off frequencies ka, = jg; and
kas = j'y; for the longitudinal and transverse cases
respectively. Below cut-off the real part of the im-
pedances consists of §-function resonances. The ima-
ginary part behaves like a reactance. Above cut-off
the resonances have a finite bandwidth owing to the
radiation into the pipes. Some modes, especially
those below cut-off, agree well with the modes of a
closed resonator. Others are heavily degraded and/or
shifted in frequency owing to the beam pipes. In
general, the longitudinal resonances are shifted up-
wards in frequency since the pipes correspond to a re-
duction of the capacitance, whereas the transverse re-
sonances are shifted downwards in frequency because
the fields are essentially magnetic in the pipe
region, thus increasing the inductance.

High-frequency Behaviour

In order to study numerically high-frequency
behaviour it is easier to consider a radial line. At
first, we can excite either even or odd modes when
selecting the cut-off values ka. = ma/2g. Then,
the system of linear equations reduces to half the
order and we can go up to twice the Ffrequency. This



712

has been done in [10] for the longitudinal impedance
and a clear decay with w-! was found between
ka = 10 and ka = 100. Secondly, the behaviour is
smoother than for a resonator and allows a direct
visualization of the decay with frequency.

But the proper way to study the w dependence is
the integration over bins, although it is quite
computer-time consuming. This has been done here.
Again the real part of the longitudinal impedance
shows w” behaviour in the case of a radial line.
As expected the same behaviour was found for a resona-
tor (Fig. &). The imaginary part has the same beha-
viour and about the same magnitude, only 10% smaller.
In the graph are also shown values obtained from an
asymptotic formula derived in [13,11]. They aqree
very well with our numerical data, and we can write
the asymptotic form of the longitudinal impedance as
Zo 29
ZL (-3 2n nka

The high-frequency decgy of the transverse impedance,
shown in Fig. 7, is w™ as expected.

» Iy free space impedance

Chain of Resonators

Often it is of interest how a distinct resonance
shifts or how the total impedance changes when going
from a single resonator to many resonators. This is
of particular interest since it would allow us to de-
cide from what number on an infinite periodic struc-
ture is a good approximation.

Figure 8, taken from [10], shows the real part of
the longitudinal impedance of a very small resonator
as is used for bellows. The single undulation has a
broad-band resonance located at ka = 4.7, This cor-
responds to a A/4 resonance of the radial line. With
an increasing number of undulations the resonance be-
comes broader owing to coupling between undulations,
and is shifted in frequency. for more than 20 undu-
lations, a real isplated resonance is formed at
ka = 3.45. This resonance becomes smaller and smal-
ler in bandwidth, although the losses per wundulation
stay constant. Finally, the resonance becomes &~
funct ion-1ike for the case of an infinite periodic
structure. The resonance frequency ka = 3.45 is that
of the space harmonic, which has a phase velocity
equal to the velocity of light.

For a large resonator the situation is very much
the same apart from the fact that the resonances are
spaced much more closely. Fig. 9 shows the case of a
set of 20 resonators as used in Fig. 4. The reso-
nances of a single resonator are narrowed in bandwidth
and shifted towards the values of an infinite periodic
st ructure. The process of narrowing the bandwidth,
i.e. increasing the Q-value, is even more impressively
viewed by the imaginary part.
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Fig. 1 Point charge travelling parallel to the axis
of an infinite pipe loaded with cylindrical resonators
{upper part) or radial lines (lower part).
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Fig. 2 Real part of the longitudinal impedance of a
radial line (geometry of Fig. with I = 1,
= 11.63 mm, 29 = 29.15 mm, y = 10° )
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Fig. 3 Real part of the transverse impedance of a

radial line (parameters of Fig. 2).
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Fig. 4 Longitudinal impedance of a
(geometry of Fig. 1 with I = 1, a =
29 = 29.15 mm, b = 41.3 mm, y = 10%).
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Fig. 5 Real part of the transverse impedance of a
resonator (parameters of Fig. 4).
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Fig. 6 High-frequency dependence of the longitudinal
impedance of a resonator (averaged over intervals
Aka = 1, parameters of Fig. 4) ooo data from asymp-

totic formula[11,13].
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Fig. 7 High-frequency dependence of the transverse
impedance of a resonator (averaged over intervals

Aka = 1, parameters of Fig. 4).
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fig. 8 Real part of the longitudinal impedance of a

set of resonators {geometry of Fig. 16with a = 15 mm,

2g=2mam, b=1mm, L = 4mm, vy = 10°).
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Fig. 9 Longitudinal impedance per resonator for the
case of a chain of 20 resonators (geometry Fig. 1 with
1 = 20, a = 11.63 mm, 2g = 29.15 mm, L = 35 mm,

b= 41.3mm, y = 10%). The arrows + indicate space
harmonics in an infinite periodic structure with phase
velocity equal to velocity of light (calculated with
KN7C [12].



