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Abstract 

The longitudinal impedance of a linear array of cylin- 
drically symmetric cavities connected by side pipes is esti- 
mated in the high-frequency limit. The expression for the 
impedance is obtained for an arbitrary number of the cavi- 
ties. The impedance per cell decreases with frequency w, as 
W -‘j2 for a small number of cells, and as ww3i2 for the infinite 
periodic structure. The parameter is given which governs the 
transition from one regime to another. 

The next generation of linear colliders, FEL drivers, and 
synchrotron light sources will use bunches with small bunch 
lengths. Evaluations of the stability of the particle motion 
and of the current limitations in all such devices require an 
accurate estimate of the impedances for the high-frequency 
region. 

There is a certain discrepancy at the present time in the 
estimates of the longitudinal impedance obtained for different 
models. The optical resonator model,l’l which is applied to an 
infinite periodic set of thin discs, predicts a decrease of the 
longitudinal impedance with frequency as w-3/a, and some 
numerical calculations are consistent with this result.lal On 
the other hand, the analytical evaluations of the longitudinal 
impedance for a single cavityi41p161 give quite a different be- 
havior; the impedance goes down as w-l/l, This dependence 
for a single cavity was also obtained in a simple diffraction 
model.13~~~sl~~71 As we show in the present paper the different 
behavior of the high-frequency impedance is related to the 
differences of the models used. 

Here we present an analytical evaluation of the real part 
of the longitudinal impedance for any number M of identical 
cylindrically symmetric cells. Each cell consists of a cavity 
with side pipes. The length of a cavity is g, and the radii 
of the cavity and the pipe are b and a, respectively. The 
total length of a cell is L. At both the entrance and the exit 
the system of cells is connected to semi-infinite pipes of the 
same radius a. The frequencies (4’ under consideration are 
well above the cut-off frequency of the pipe, but at the same 
time are small in comparison to the particle Lorentz factor 7: 
1 < we/c < 7. The number of cavities M is considered to 
be a variable parameter. 

For cylindrically symmetric (monopole) modes, Fourier 
harmonics of the electric field which are generated by a parti- 
cle with the charge e and the velocity u moving along the axis 
of the system, can be written aa a sum of the field of a particle 
in a straight pipe of the radius a and the radiation field Erod, 
produced due to the presence of the cavities. The radiation 

field Erod satisfies the homogeneous wave equation and has 
to be finite at r = 0. It can be represented as a superposition 
of cylindrical eigenfunctions with unknown coefficients A(q), 
for example: 

00 

Erd(r, z) = k 
J 

d+(dJo(x,r/a)eiq’ (1) 
-cc 

where xq = aJk2 - q2 + ir. An infinitely small imaginary 
part t is added to comply with the radiation condition. 

We look for the solution in the form 

M-1 m Vn(o) A(q) = N&o *go qgBre’(k-q)NL . (2) 
Boundary condition E:Od(a,z) = 0 for g < z - NL < L and 
matching conditions for the radial and tangential components 
of the field in the pipe and in the N-th cavity at r = a, 
0 < z - NL < g give the following integral equation for Bf: 

B,N = -$2,(k){ &V;(k) + Mc1 x I’;;“‘o9’} (3) 
N’=O m 

where N -II O,l, . . . . M - 1. Here the following notations are 
introduced: 

C,(k) = dTtan((b-a)dm); A, = 7 (4) 

V,,(q) = itUi(q) = I,” dzewiq’cos(A,z) 

The matrix elements I?,,= are : 

(5) 

rN-N’ _ 
nm - 

V~(ul)V,(ul)e'L(Ut-k)(N-NI) 
v~(ur)v,(ul)e-'L(Ul+k)(N-N') , @) 

for N L: IV and N < N respectively, where u1 = 
kg - (vl/a)P and V( are roots of the equation Jo(v) = 0. 

In the sum of Eq. (6) all terms with V! > ka are exponen- 
tially small. Hence, the summation over 1 may be truncated 
at ~1 = ka. 

The longitudinal impedance in terms of the coefficients 
Bf is . 

M-l cx: 

Z(k) = -Z. x x V,,(k)B;(k) . (7) 
N=O n=O 
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So far, Eq. (3) is the exact set of equations defining the radi- 
ation of an ultrarelativistic particle. 

In the reroth order approximation we neglect the second 
term in the brackets in Eq. (3): 

Notice that in the zero-th approximation the impedance per 
cell does not depend on the number of cells in the array. 

The real part of the impedance is given by the sum of 
b-functional terms 6(k - k,l) where the resonance frequencies 
are defined by equation C;l(k,,) = 0. 

The main contribution to the impedance comes with a 
good accuracy from eigenmodea with the eigennumbers 

n = no(k) = 2 i 1 and 0 I l I Ln** . (Q) 

This result has a very simple physical meaning: only these 
eigenmodes efficiently interact with a relativistic particle 
traversing a cavity. The impedance averaged over the interval 
of frequencies Ak z s/2g differs from Lawson’s estimate131 

<Re(G) >= $e& 

only by a numeric factor 7r/3. Numerical calculations confirm 
that this result is independent of the choice of the size of the 
interval Ak. 

The zero-th approximation for a single cavity can be im- 
proved by taking into account that the main contribution to 
the sum in Eq. (3) is given by the diagonal term m = n. 
All the other terms give only small corrections which can be 
taken into account by the method of iterations. In this diag- 
onal approtimation[61 the impedance can be represented as a 
aum over the Breit-Wigner terms. The resonance frequencies 
are now given by the condition 

Re y(k) = 0, y(k) E YC;’ - I$, 

and finite resonance widths are defined by Im I’:,,. ReZ is 
not singular, as it was in the zero-th approximation, although 
it may have rather sharp peaks. This is the main qualitative 
feature of the diagonal approximation for a single cavity. The 
result for R&/M is the same as in Eq. (10). The diagonal 
approximation allows us to estimate corrections, (given by 
the next iterations) and proves that in high-frequency limits 
they are small.lbl 

Consider now a structure consisting of M cells. The 
interference of the waves generated in different cells is crucial 
in the evaluation of the impedance for the multi-cell structure, 
and must be taken into account. We describe the interaction 
of a particle with each cell in the same way as we did above 
for a single cavity. Therefore, we consider Eq. (3) in the 
diagonal approximation for the lower indices, retaining only 
terms m = n = n,, but keeping the summation over the 
upper indices N’. 

Furthermore, all terms in Eq. (3) with N < N’ contain 
factors which oscillate with the sum frequencies UI + k N 2k. 
After averaging over the frequency interval they would only 
give a negligibly small contribution. Therefore, we may as- 
sume that I’:;“’ = 0 for N < N’ and retain only terms with 

N > N’ which oscillate with the small difference frequencies 
(ur - k). Equation (3) takes the form 

B,Ny(k) = 2 + Nc l?;m-N’Bf’ . 01) 
. N’=O 

Equation (11) shows the recurrence relations betweenco- 
efficients 8;. It can also be solved by the discrete Laplace 
transformation. The impedance (Eq. 7) of an array with an 
arbitrary number of cells M is given by the following expres- 
sion: 

Z(k) = _ 2 z”~k$“2 . 
n=O 

J 

i*+a &’ - 1 

-i.+mds(Y(k) -r~(~>k))(COshs-l) 

(12) 

Here 

‘,(s,k) = ~ 2*i’~~~r”2 CiL(L-Yf~+‘ _ 1 
I=0 

(13) 

and 
‘Ll = Jk2 - (442 + ie * (14 

The contour of the integration can be closed by two par- 
allel lines s = -in + u and s = +is + o, -w < o < 0 . The 
integral is then equal to the sum of the residues at the root 
of the equation cash s = 1 and at the roots of the equation 

y(k) = rn(s, k). (15) 

For an array with small M it is convenient to rewrite 
Eq. (12) introducing a new variable t = e-‘. This inverts the 
infinite point to zero and transforms the contour of integra- 
tion to a circle with a radius ItI < 1. The only singularity 
inside the contour is at the point t = 0. The integral is given 
by a finite double sum. If the following condition is fulfilled: 

the average impedance per cell is now given as an expansion: 

<Re($) >= ~+&‘[l+~~+...] (17) 

in a parameter r N M*/2/(ka)3/1. In this case the real part of 
the impedance per cell is the same aa that for a single cavity. 
For large M, expansion (Eq. 17) is not applicable. This case 
requires the detail analysis of Eq. (15). We can show that the 
average impedance for an arbitrary M may be written as 

< Re >= $&)l@W,M) (18) 

where 

G(k,M) =k~g(;)~/;$~(~- T), 

(1Q) 



Here Conclusion 

and 

E(t,k) = $/‘&i-$#; 

P(t,M) = 
sin2(Mt/2) 

Msin2(t/2) (20) 

are introduced. For an infinite periodic array of cavities 

limM,,F(t, M) = 2x6(t) . (21) 

For function O(k, M) we obtain in this case 

Q(k,oo)=l-= 
4% 

(22) 

and the average real part of the impedance per one cell is: 

< Re >= &(g)aff+O(k-2). (23) 

It decreases with frequency as (ka)-3/1. 
For finite M >> ka, the estimate of the factor @ gives 

@=l+ -L-(y)3’2p. (24) 

For M + co @ = 1, as is shown above, the real part of 
the average impedance decreases with frequency as (ka)-3/2. 
The same is true if the second term in Eq. (24) is small. 
For a large given M the transition from the regime (ka)-‘1’ 
(Eq. 17) to the regime (ka)- 3/a (Eq. 23) takes place in the 
range 

kaz 
L aMa (T)“‘@. (25) 

The transition from one regime to another is illustrated in 
Fig. 1. The curves represent function Q versus ka2/ML for 
different values M and are obtained by numerical integration 
of Eq. (19). The data are in agreement with the analytical 
estimates given above. 
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Our result is baaed on the solution of the exact system 
(Eq. 3), derived from the Maxwell equations with the appro- 
priate boundary conditions. To obtain the solution we have 
done two approximations. First, we have shown that there 
are only a few modes in the cavities which substantially in- 
teract with a relativistic particle in the high-frequency limit, 
This approximation is independent of the number of cavities 
in the array and for a single cavity gives the corr,ect result 
within a factor of order of one. Second, we neglected the in- 
teraction of a particle with waves traveling in the opposite 
direction. This reduces the infinite set in Eq. (3) to the re- 
currence equations in the form of Eq. (11). They are solved 
explicitly with the result given by Eq. (12). The interference 
and the phase difference of the waves generated in different 
cells is taken into account. Since we are interested only in 
the impedance averaged over frequency there is no need to 
calculate the exact frequencies of the eigenmodes for the ar- 
ray. The explicit form of the averaged impedance is given in 
two extreme cases of small and large numbers of cells. The 
frequency dependence of the real part of the impedance has a 
direct implication on the design of a short bunch accelerator; 
had the asymptotic decrease of the longitudinal impedance 
followed the law k-‘ja, the main contribution to the total 
energy loss would be given by the high-frequency tail of the 
impedance and the total energy loss would depend on the 
longitudinal rms of the bunch u as U-I/~. 

The appropriate parameters of two accelerators - Stan- 
ford Linear Collider (SLC) and TeV Linear Collider (TLC) - 
show that for both designs the impedance falls off as k-3/2. 
However, the parameter M could be smaller than the to- 
tal number of cavities for different reasons (sectioning of the 
accelerator, differences in the dimensions, production errors, 
etc.) which could change the impedance behaviour for typical 
frequency k - l/o, and the total energy loss may increase. 
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