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GALOPR, A BEAM TRANSPORT PROGRAM, WITH SPACE-CHARGE AND BUNCHING
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Abstract

GALOPR is a first order beam transport code
including three dimensional space-charge forces and the
beam bunching process. It deals with usual optical
devices (bending magnets, lenses, solenoids, drifts ,
bunchers) and can take into account any special optical
device represented by its transfer matrix with
space~charge the ("Miiller inflector" was recently
introduced as one of these devices). The beam can be
continuous or undergoing a bunching or debunching
process. The beam line parameters can be optimized in
order to fit at will the 6 x 6 transfer matrix and the
6 x 6 covariance matrix for a maximum beam intensity.
The results are presented with useful data tables and
graphical displays.

1) Introduction

The computer code GALOPR (GANIL beam Lines QOPtics
including Radiofrequency bunchers) has been developed
at GANIL from the code PREINJ (Ref. 1, 2) which was
written at CERN to study the focusing and bunching
characteristics of the Low Energy Beam Transport system
{LEBT) for the actual proton linac injector, including
space charge forces.

Firstly, a version without buncher but allowing to
choose the ion mass number and charge state was used at
GANIL to calculate the transfer lines between the 3

cyclotrons ; the space charge forces were taken into
account in the dipoles.
Since 1985, we have been developing the GALOPR

version. Its wuniversality makes it possible to
calculate with linear approximation, the cptics of a
peam line either existing or being designed, for
continusus or bunched beams, or beams in the process of

being bunched, including space charge forces. Any
buncher or rebuncher and any kind of element with an
analytically known transfer matrix (drifts,
quadrupocles, dipoles, solenoids) or a numerical

transfer matrix are taken into account (Ref. 3).

The beam is considered as an hyperellipsoid in the
6 dimensional phase space. All forces, including space
charge are linear with respect to the reference
particle which in the present version is energy-fixed .

we have used GALOPR to study the axial injection
beam line into the two injector cyclotrons for the
GANIL modifications to come {0.A.E and 0.A.I) including
a "Miiller inflector" in the 20 kV injection line and a
"Pabot-Belmont inflector" in the 100 kV injection line.

2) Beam parameters

Each particle at a point S of the beam line is
located in the 6-dimensional phase space by its
coordinates : x, x' = dx/ds, y, y' = dy/ds , z and z' =
dz/ds, where s is the curvilinear coordinate. The fifth
coordinate z is prcportional to the difference between
the time of arrival of a particle at point § and the
corresponding time tO for the reference particle,

zZ = Vp (t - ty) (1)

where v is the velocity of the reference particle.
The beam is entirely defined by its intensity and
the second order moments of the particle distribution
in the 6-D phase space ; we will sometimes call these
moments 'rms'" wvalues". They can be written, for a
centered distribution
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where dV and V are the volume element and the volume in
the 6~D space.

If the 6 coordinates of each of the N particles of
the distribution are known, the "rms'" values become
merely:
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and define the covariance matrix Z of the beam.

The type of distribution is assumed to be
hyperellipsoidal, i.e the surfaces of equal density are
homothetic to the hyperellipsoid defined by I .

If i represents the envelope of the hype lipsoid
for +he cocordinate u, then the ratio k = GA\/IFF = /%
is characteristic of the distribution. For an uniform

distribution ( p= cst) in a n-D space, k =N\/n + 2. A
continuous beam, is represented by a infinitely long
cylinder (n = 2, k = 2), and a bunched beam by an
ellipsoid (n = 3, k = \j?ﬂ, both being uniformly
charged.
The rms emittance in each of the 3 phase planes

{(x, x'), {y, y') and {(z, z') is given by

~ _ T ..—-——-2

E, = W u? - uu’ (4)
and is connected to the marginal emittance by

E, = 2 E, (5)

As demonstrated in Ref. 4, the evolution of the
rms values depends mainly on the linear component of
the space charge force, in the case of linear external
forces. Therefore, all types of distributions having
the same rms values can be treated by such linear
programs ; the tuning of the physical parameters of the
line is then the same for any distribution.

The above-mentiocned (cylinder and ellipsoid) have
space charge forces varying linearly with the
coordinates and will be chosen in the following
treatment as models.

3) Space charge force calculation

The components of the radial electric field inside
an infinitely long cylinder with elliptical section
are given by
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(6)
and inside an ellipsoid by
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where a, b and ¢ are the axes, if these volumes are in
their principal axes, and where
€5 = dielectric constant of vacuum

o = space charge density

dr
J, = E'a b ¢
0 (a2 + X) \{(az + 0% + 0+ N (8

and analogous for J, and J, are dimensionless elliptic
integrals numericalf& computed by the Gauss' method.



Choosing s = v.t as the independant variable, the
equations of motion can be written for both models
= K x
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angd same for y and z

with W = energy per nucleon of the reference particle.
¢ = charge to mass ratio.

Introducing the rms values, we then get

KS = P ; for the cylinder
x 2 €, (We) Ty ; (same for y) (10)
K = L — J~ for the ellipsoid
2€, (We) x (same for y, z) (11)
4) Transfer matrices
The beam line 1is composed of thick and thin

elements ; the space charge forces act only in the
thick ones, which are subdivised into steps, the length
of which is chosen in such a way that it has only a
small effect on the transverse dimensions.

We use 4 types of transfer matrices

4.1. Thin elements

The transfer matrix for a pole-face rotation at
cone end of a dipole, and for a rotaticn of the
transverse coordinate system around the curvilinear
coordinate are given in Ref. 5.

Any element (or combinaison of  elements)
previously calculated and given in a numerical form
(for instance, the Pabot - Belmont inflector ) can be

introduced in the program as a 6 X 6 matrix.

4,2. Thick elements with decoupled phase planes
If the reference frame of the ellipsoid and of the
motion are the same, then the space charge forces (Ky)
can be added to the external ones (Q,) in each phase
plane, leading to the Hill-type equation.
d?u
-+ (Q, - K, du=0
ds? (12
The following table gives the constants Qu
corresponding to the external forces of the different

elements
| I Q [ o | o |
X z
l | I i |
|Drift Space] ) | o | o |
I | ! ! |
| Quadrupole | G/BR = Q, I o |
l | I 1 |
|Solencid(*)| % B_/BR | @ | ©
! | | | |
[Reduncher [°~——Ilﬂiz——1 Q. [-0Q
| |27YBX(WkJLG| x | ¥ |
BR = magnetic rigidity
B) = distance between 2 consecutive bunches adjacent
G = quadrupecle gradient (G > 0 is focusing in the x

direction)

BS = maximum field in the solenoid

VT = maximum vocltage times transit time factor on the
axis

LG = gap length for a single-gap element

L = so0lenoid length

(*) A rotation by an angle Q_ Lg must be added

afterwards to get the transfer matrix in the initial
reference frame,

In each plane, the 2 x 2 transfer matrix contains
sine and cosine terms if @, - K, > 0 and cosh and sinh
terms if Qu - Ku < 0.
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4.3, Thick elements with coupled phase planes

We consider the most complicated case of a dipole
with the bunch tilted with respect to the axes. We
first calculate the eigenvalues of the covariance
matrix in the real space and the eigenvectors matrix
(V) which transforms the (x, y, z) frame into_the (X,
Y, 2) frame of the ellipsoid; the "rms" values X2, Y2 6722
of the ellipsoid are the above eigenvalues.

According to the previous paragraph, the
charge forces Ky, Kyand Kz can be calculated.

The new 6-D covariance matrix may be obtained in
two ways.

space

ist. method

The 6-D covariance matrix is calculated in the (X,
Y, Z) frame ; then, a new one is obtained by the action
of a thin lens with a strength equivalent to the effect
of the space charge force over one step.

This new matrix is projected on the original
reference frame, and is finally transfered through the
next element step.

2nd. method

The forces K X, K,Y and K,Z are projected on the

Lo . 14 Z

original axes, giving .
F, Ky X X
Bl = v Ky Vi [y | = (K b |y
F, L z z

{13)
These constants Ky, must te added to the external
forces implied in the classical system
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(14}
with n = field index
R = radius of curvature of the reference frame.

And the resulting system is solved by classically
going to a Runge-Kutta method applied to a six
first-order differential equaticn system.

The final transfer matrix is composed of the 6§
vectors, solutions of the system. It 1is however
necessary to perform a matrix transformation at both
ends in order to take into account the difference
between entrance and output reference frames.

This second method is more time consuming but it
is more physical to add all the forces before solving
the equations.

4.4. Special elements

The Miiller inflecter can be given as an example
since it can be represented by an analytical matrix
from the origin to any points inside it. Care of the
space charge effect is taken by adding a perturbation
matrix {(Ref. 6). In GALCPR, we are only using the total
transfer matrix {(Ref. 6) for a 90° deflection angle ;
since an inflector 1is necessarily attached to the
central region of a compact cyclotron, two additional
factors must be taken into account the magnetic field
variation along the trajectory and a rotation to match
the reference frame of the accelerated motion.
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5. Transition from a continuous to a bunched beam.

elements studied above have a linear
action on the beam., Wnen a continuous beam, with a
negligible energy spread traverses a buncher, the
energy modulation resulting from the sinusoidal voltage
generates a longitudinal emittance. In our model, it is
of importance to include in this emittance only the
particles that will be captured further while taking
intc account the effect of all the particles (including
those which will be lost) for the space charge force
calculations ; we proceed in 3 steps

All the

5.1. Generation of the longitudinal emittance at the
buncher
Before the buncher, the emittance is a single line
along the phase axis (zero energy spread). The relative
mementum spread is given by
&p e VgT 2
z! = = = . =——————gin (2 W —) .
P 2 (W) BA (15)
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The assumption is that, at the buncher, the
trapped particles lie inside the hatched region of
figure 1 ; the separation between the trapped and
reJected particles is called the 'cut-off" phase ¢

Since, at this point, the beam is continuous, the
trapped intensity is proportional to @

trap = 1O ¢ /v where i, is the current upstream.

n = ¢C/n is the '"bunching efficiency". In order to
inject this bunch into the following sections of the
line ,the hatched portion of the cylinder is modified
into an ellipsoid with the same volume and the same
transverse rms values X  and y The rms values are
calculated assuming an uniform distribution between -¢
and ¢ in the elllpSOld or between -~ ¢$c and po in the
cyllnger (the zz' and 22 expressions are detailed
in Ref 1, 2).

when several bunchers are present, the modulation
is no longer a simple sine and it is much easier to
make a numerical treatment to calculate the modulation
and therefore to calculate the rms values, which is the
case in our computer code where a double drift harmonic
buncher is considered.

5.2. Introduction of the space charge
wWe then have to fulfill the following reguirement:
there must be continuity of the space charge forces
during the transition from a 4-D to a 6-D phase space.
The chosen model is a combination of the actions
of a infinite cylinder with the density p of the
rejected particles and of an ellipsoid with thé density

P = P oo where p is the density of the trapped
particles. These densSities are given by
5 iy Tre ig Tee .
= ——T] P, o= - M)
e v €y, -V ¢ ’
(18)

{

with VO = ampr X ? = volume of the
the length B

cylinder having

and V =&m X ? z, = volume of the hatched cylinder
and can be replaced in formulae (10) and (11}, giving
K= K& + K& = ! (p 2 t (P, - p.) J
x X X 260 (W/€) L c;‘:; e [ ;
P, - P,
K, = K = ————" I~ (17)

2 €4 (W/ey z

5.3. Longitudinal matching

Up to this point, the choice of ¢ and VgT was
arbitrary. If no space charge effect exlsts and if an
upright ellipse is required at the end of the line, the
phase acceptance @ is given by the intersection of
the ellipse with the phase axis and depends only on @
and not on V_T.

In the presence of space charge feorces,
use a minimization method acting on ¢
to obtain the desired ¢ value.

one must
and VBT in order

6. General optimization

The previous secticns show that it is possible to
transport a beam with space charge forces along a beam
line of given structure. The goal of the program is
also to determine the tuning parameters of the elements
in order for the beam to be matched, i.e. for its 6-D
emittance to fit the required acceptance.

In the transverse plares, the main parameters are
the quadrupocle gradients (and rarely the drift
lengths); they are varied in order to

- fulfill given conditions on some elements either
of the covariance matrix or of the transfer matrix at
the matching point,

- limit the beam dimensions locally or along the
whole line,

In the longitudinal
possible by varying ¢, V_T
the voltage of a retuncher,

Due to the wvarious couplings between the
transverse and longitudinal planes, all the parameters,
conditions and limits are included in the same
optimization which is carried out by a least-sguares
method.

plane, the matching is
of the first buncher and

7. Conclusion

The code GALOPR is now running onto the IBM 3080
{(VM/CMS system) of the C2 IN2P3 (IN2P3 computer centre
in Lyon) and into the 32 bits MODCOMP at GANIL : an
off-line code allows to draw the beam envelopes onto a
UBENSON" plotter.

Two further improvements to this code are planed
by introducing

~ a thin lens taking into account the space charge
effects in an element whose transfer matrix is given in
a numerical form,

- elements in
accelerated.

which the central particle is
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