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Abstract. The longitudinal bunched-beam instability is 
considered when a vacuum chamberhas a high-frequency im- 
pedance. It is shown that the microwate criterion is, 
in certain cases, the sufficient stability condition. 
For a resonance impedance, the necessary and sufficient 
stability condition Is obtained in the form similar to 
that for a coasting beam. The role of statical effects 
which may cause the increase of momentum spread suffi- 
cient for beam stabilization is discussed. 

I. INTBODUCI:ION 

The microwave model is often used for the desc- 
ription of the longitudinal bunched-beam instability. 
The model gives the following stability criterion 111: 

(1) 

Here Zk is the longitudinal impedance for the k-th har- 
monic of the revolution frequency, J is2the average be- 
am current, B is the bunch factor, E=mc '$ and 8 are the 
energy and normalized velocity of particles,? =d- ?jm2, 

DP 
d is the momentum compaction factor, + - is the maximum 

-P 
momentum spread, and the factor /\-I depends on the 
bunch distribution function. The model explains satis- 
factorily some experimental data [l-21 but has no con- 
vincing theoretical ground. 

Equation (1) was initially obtained by analogy 
to the known stability criterion for a coasting beam, 
with the local increase of the beam current taken into 
account by factor B. This analogy is in fact far from 
being rightful because the conditions for perturbations 
to propagate in coasting and bunched beams differ essen- 
tially. The perturbation produced by current fluctuati- 
ons in a coasting beam Is propagating from particle to 
particle against the beam motion until the revolution 
closes and so on. That is how back-coupling is realized 
and the "self-action" of particles occur, which is the 
indispensable condition for the usual (regenerative) 
instability to arise. In a bunched beam, perturbation 
csn propagate from the bunch head to its tail without 
passing to the next bunch because of a rapid field dam- 
ping (for a wide-band impedance), Back-coupling cannot 
be closed synchrotron oscillations either since this 
mechanism is effective only for a low-frequency impe- 
dance when multipole oscillations of bunches arise [3]. 
For simultaneous excitation of several multipoles,which 
is typical for a high-frequency impedance, this channel 
is actually locked. 

There may be a difPerent interpretation of ine- 
quality (1). The interaction of a bunch with an induc- 
tive impedance (Zk~ik) was investigated in papers [4-S]. 
It may be seen that the self-consistent momentum spread 
satisfying inequality (l), where A=l/K, is established 
after the transition, with this distribution being 
stable. This suggests that restriction (1) can, in some 
cases, have "static" origin and at the same time be 
the sufficient stability condition. 

It was also shown in paper f6] that inequality 
(1) Can be the sufficient condition for stability or, 
more precisely, for the absence of a strong instability. 
However, the problem regarding the necessity of this 
condition remains open for discussin. 

The role of static effects was studied in pa- 
per ['7] in a different way for a freely drifting bunch. 
The condition for its stability is shown to be the same 
as for a coasting beam (restriction (l), without factor 
B). However, violation of restriction (1) (with factor 
B included) leads to a sharp amplification of the beam 
reaction to external perturbations which is interpreted 
as a static effect. 

The present work discusses the scope of these 
problems with reference to the standard acceleration 
mode. 

2. THE SUFFICIENT CONDITION FOR STABILITY 

I& us take the system of equations for Fourier- 
harmonics of the electricfield of the beam without the 
equilibrium field: 

E,(n)= z,c.d$ nkk,(R)Ek’(Q)’ (2) 

where n ,,,(Q) is the beam Conduclivity matrix [8]. The 

solvability condition of this system gives the Spectrum 
of the characteristic beam frequencies iQ1 . The pre- 
sence of the frequencies with a positive imaginary part 
means instability of the beam. 

Let us suppose that the impedance is conside- 
rable only for the harmonics 

\ W,\?Ak, Ak<< ko, koA6->A% . (3) 
5 

where 2Ae is the bunch azimuthal length,nS, ARs are 
the synchrotron frequency and its spread. The excita- 
tion frequency estimated in paper [31 (see also Secti- 
on 3) is 

;? 
Rs 

\R\kkORSA07>- . 
AR, 

( 4) 

Following [3] one may obtain in these approximations 
the formula for tz beam Conductivity: 

(5a) 

F(Q, u)e 
-ikedQ 

, 

TFo(uldu=;.' (SC) 

Hero giy the orbit length, U=pJls is the momentum de- 
viation from the synchronous one, 0, is the angular 

velocity of a synchronous particle, F(e, u) is the 
equilibrium distribution function normalized according 
to (SC). 

1st us rowrite system (2) as 

iZk$Gksk,Ek,=~Ek, (6) 

where Gk are the Fourier harmonics of the function 

(7) 

and >is the eigenvelue of the system. The Comparison 
of (2) and (5a) yields the dispersion equation 
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h(h) = eJ 
8M(y2 (8) 

Whereof there follows the sufficient condition for sta- 
bility: 

max \Xm\c b%k 121 pp32 e; p (9) 

for hn~>o, To estimate the maximum eigenvalue we use 
the known inequality: 

l'h\s max\zk\~\Gk'\' 
(k) 

For the Gaussian distribution we have 

Ffoexp( ‘_ 

therefore 

ZIG,\ = 1 

k2Q2 

Gk~exp(- -$), (11) 

5 Gk\=)Gd= A) 
B 

00 

/I=&$ p&y -Do 
(1%) 

The substitution of (12a) into (10) and then into (9)le- 
ads to inequality (l).A similar result has been obtained 
in paper [6], However, the assumption used there,Imfi 
*as, meant a strong instability. In fact, this con- 
dition is not obligatory, and formula (1) remains valid 
even for Imn-LO, allowing one to interpret it as the 
sufficient condition for stability. In addition, it is 
easy to see that the smoothness of the distribution 
function is the most essential point for relation (12a) 
to be fulfilled. This allows one to believe that the 
obtained result is true for a sufficiently wide class 
of realistic distributions, for which, as estimated, 
A-l. 

3. RBONANCB-TYPE IMPEDANCE 

Let us consider an impedance 

Rr 
Zk= 

,-iWs+~)2-d 
(13) 

20,Ak(kUs+~) 2kbk 

It is possible to obtain from (2), (5a) and (13) the 
differential equation for the function E(@=zE,eike: 

i koe - -ik,8 wr 
Its solution is E=Ae +Ae , where koC-, and 

% 
the slowly varying amplitude satisfies the equation 

A'(e)+g(B)A(Q)=O, (1%) 

eJRrAk oI aF 

gm=i- 
s 

d$%u)du 

a! 
(1%) 

-0 
Q+k,r)c?, ;- 

-At-i$ -ko). 
8 

S 

Equation (15a) has the periodic solution only under the 
condition that 

2a 
J g(Q)de= -sin, (16) 

which, with (13) and (15b) taken unto account, can be 
presented as 

eJZk 
l=i- w 

d+ -2 Q+ko~t& 
ps 

(17) 

where k=ko+n is an integer. This expression coincides 
almost exactly with the dispersion equation for a coas- 
ting beam having the distribution function F,(u), the 
difference being an inessential replacement k+k, in 
the integral. The stability condition is reduced to ine- 
quality (1) without the bunch-factor B, thus depending 
on the average beam current only. 

4. TIBI ROLE OF EXTERNAL PERTURBATIONS 

A more consistent approach should include the 
initial conditions for the beam current and field and 
also such external factors as variations of the accele- 
rating voltage amplitude, BF noise, etc. Though they 
are many, still they can be taken into account by intro- 
ducing an additional current J,x,(e)e -tit. AS a result, 
system (2) and equation (4) become nonuniform. In par- 
ticular, equation (15a) becomes 

R# 1 
A'+gA= -i-Jexte-ikoB 

xkO 

(18) 

and has the following periodic solution: 

Rl/lk 
A(Q)=- 

2 

2"+eexpi-;*o".~g(e'~)de~']Jext(~,)d~, (I9) 

s exp2+0")de"-l 
e 0 

This expression has a pole in the complex planehwhose 
position is determined from the dispersion equation (17: 
If this pole is located in the upper half-plane, usual 
stability occurs. Besides, the amplitude growth may be 
related to a large value of the exponential multiplier 
in the numerator of formula (19). One may get convinced 
that for a narrow-band impedance,Ak+O, this does not 
lead to additional limitations on the intensity except 
for those following from (17). For a wide-band impe- 
dance,AkAfre>l, a rough condition of Such a growth can 
he written as 

maxReg(e)>O. (20) 
Whereof with account of (15b) the inequality recipro- 
cal to (1) is obtained with 

A =max I mP2 aF 
2 ,a u) I (21) 

It makes no difficulty to see that for realistic dist- 
ributions E\ - 1. 

Of course, these results make sense only if the 
current Jext is sufficiently large. Bere lies the dis- 
tinction from the traditional approach attributing the 
appearance of J ext to small fluctuations of the dlstri- 
bution function. The appearance of Jext during typical 

acceleration is, apparently, related mainly to the beam 
deviation from the self-consistent state due to varia- 
tion of particle energy or of any other parameters of 
the machine. If so, the effect considered above Should 
be interpreted as an evolution of the equilibria dia- 
tribution with the external conditions varied. As a re- 
sult, the momentum spread satisfying inequality (1) is 
established in the beam, which ellminates a possibility 
of %sual" instability. However, with a rapid variation 
of the machine parameters, the evolution of the distri- 
bution function becomes nonadiabatic and must be accom- 
panied by a noticeable modulation of the bunch current, 
i.e., by a burst of high-frequency radiation. The most 
pronounced effect is to be expected in the region of 
the transition energy. This is confirmed by experimen- 
tal data [l-2]. 
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