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A\ bstraet

We report on 53, the static solver in the MAFIA group of
codes[1] for numerically solving Maxwell’s equations. This code
is capable of an improved formulation of boundary conditions
when dealing with boundaries towards an unbounded domain.
We will demonstrate the resulting improvements in the solution
and report on first preliminary applications and their results.

Introduction

As reported [2], the MAFIA group of codes is extended by
a solver for electro- and magnetostatic problems. For pre-
and post-processing it uses the MAFIA modules M3 and P3
and thus the same approach of FIT-method (Finite Integration
Technique)(3] and staggered grid allocation [4] for formulation
of the relevant equations. The main emphasis in developing
this code has been put on the improved formulation of bound-
ary conditions when the calculation volume is an unbounded
domain and on a fast performance (fast H'-field calculation
and a multigrid solver for big problems).

Boundary conditions at open boundaries

The accurate modelling of boundary conditions is an essential
part in defining a physical problem described by differential
equations. When dealing with a problem in an unbounded do-
main, this is not always easy to perform. Symmetry planes and
materials with confining properties can easily be modelled by
Dirichlet- or Neumann boundary conditions. But open bound-
aries in terms of these boundary conditions are inaccurate and
memory consuming. For an analytic approach to the solution
of differential equations apen boundaries can be moved towards
infinity and the vanishing of fields at infinity can be used for
correct formulation of boundary conditions.The requirement of
a finite calculation volume in numerically solving a problem
leads to a half-hearted approach. In defining a huge mesh,
open boundaries occur in a large but finite distance from the
structure of interest. There the boundary conditions for infin-
ity are imposed.The huge mesh requires a lot of memory, the
boundary values imposed are inaccurate and, for the boundary
shape does in general not coincide with the shape of isovalue
planes, one introduces wrong field shapes also.
We introduced a procedure [2], that uses an analytic approx-
imation for these boundary values and couples them to the
equations describing the inner domain. This analytic approxi-
mation can easily be obtained from the multipole expansion of
the current- or charge-distribution inside the volume of interest.
The description of static problems can be reduced to Pois-
son’s equation [5,8]
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senting the charge or current distribution. The general solu
tion of Poisson’s equation
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expanded in a Taylor series is the aforementioned multipole
expansion
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where q represents the total charge, d is the dipole moment,
Q@i is the gquadrupole tensor and € is a unit vector. So, using

the inner current- or charge-distribution of the problem,
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Figure la: The parallel plate capacitor calculated with open
boundary conditions. Here and in the next figure you see a
2D cut of the 3D calculation showing equipotential lines of the
electric potential.
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Figure 1b: The parallel plate capacitor calculated with ordinary
Dirichlet boundary conditions.



each boundary point can be described with arbitrary accu
racy, depending on the number of multipoles taken into ac-
count. This can be done in locally calenlating ¢ at the open
boundaries, Or, using that (3} is only r-dependent, 8¢ /dn can
be calculated.Both methods have been programmed.The latter
allows an easier iteration scheme but might cause mathemat-
ical problems in applications with Neumann conditions at all
boundaries. There will be further testing which method is the
best. In electrostatics, tests up to now seem to indicate that
the quadrupole as highest multipole contribution is sufficient
for most applications, for higher multipoles vanish rapidly to-
wards the boundaries.In magnetostatics higher order multipoles
might be important.

With a fairly simple three dimensional parallel plate capacitor
the power of this formulation of open boundaries can easily be
demonstrated. We made calculations on a farily small mesh,
comparing a run with open boundary conditions to one with
ordinary Dirichlet conditions.Figure 1a shows that the solution
seems not to be influenced by the boundaries, while in figure
1b you see the fieldshaping influence of the Dirichlet boundary.
Another fairly easy way to demonstrate the improvements is,
comparing the potentials of a problem calculated analytically
to the solutions calculated numerically using both approaches
for the open boundary conditions. Figure 2 shows the com-
parison of the qualitative behaviour of a pointcharge potential
calculated in the three different ways.
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Figure 2: Qualitative behaviour of the peintcharge potential.
Here the ratios of potential values at equidistant steps r are
plotted. They should behave like n/{n+1).The comparison for
analytically(-) and numerically calculated results with(...) and
without(¥} open boundaries are plotted.

First applications in electrostatics

First applications here show that it is necessary to put the code
in a form that allows calculations with a big number of mesh-
points. A lot of information users want to deduce from field
calculations depends very senitive on the field accuracy. In
collaboration with the ZEUS detector group we calculated the
electric fields for the forward/rear driftchamber of this detec-
tor(figure 3) 11, ZEUS is one of the two high energy physics
experiments at the new DESY p*, e~ collider HERA [6,7]. The
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aim of a numerical modelling of this chamber was a param
eter study to find an optimal set of potential values for the
field shaping strips to get a homogenuous electric field in the
drift region. which should cover most of the chamber.{12] And
to get a realistic idea of the chamber’s gas amplification, de-
termined by the electric field close to the wire surfaces. Most
of the modelling has been done with a PROFI (8,12 2D ap-
proach due to memory problems. But the testchamber, used
for calibration, has a geometry that requires a 3D calculation
and due to a dielectric window there are open boundaries to
be modelled accurately. These changes in the testchamber con-
struction compared to the chamber used in the detector later
might be important to judge the quality of the calibration done
with this chamber. For to know the gas amplification with an
accuracy of 1 %, one needs to know the electric field with an
accuracy of about 0.05 %. To achieve accuracies in this order of
magnitude demands a very fine and well behaved mesh. Which
requires a lot of memory in itself, memory you do not want to
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Fignre 3. The FTD/RTD driftchamber of the ZEUS detec
tor. This is the design of the test chamber used for laser cal.
ibration of the chamber’s gas amplification. The driftchamber
will be used as trigger for other detector components and due
to a high resolution (100 ) will be important for path recon-
struction.
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Figure 4: Equipotential lines in a cut through the dielectric
window.One can see the influence of the window on the solu-
tion even in this preliminary run with a coarse mesh.
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use on the modelling of open boundaries instead, as codes with
the ordinary way to treat open boundaries would require.
Qur 3D calculations performed quite well for the homogenuous
part of the chamber.Also the influence of the dielectric window
on the gas amplification could be demonstrated qualitatively
with the cost of a few extra meshplanes. Only close to the
wires the mesh could not be defined fine enough, due to memn-
ory problems.For this reason a better simulation of lines of con-
stant potential, simulating thin wires, has been introduced in
addition to the standard MAFIA-preprocessor input and has
to be tested now.

This example required a huge mesh(140.000 mesh points), high
accuracy, full 3D treatment and open boundary conditions.On
an IBM 3084 it took about 30 minutes of cpu-time with the
SOR solver to obtain these results.They indicate that with a
few improvements that are easy to incorporate, S3 is a useful
tool for designing electrostatic devices.

Magnetostatics

In codes that numerically solve Maxwell’s equations for magne-
tostatics, it is a common technique to reduce the problem -like
in electrostatics- to one described by Poisson’s equation for a
scalar potential. This is done by splitting the magnetic field
into two parts [9]. One part is H' that in a pure mathemati-
cal sense represents all contributions of the constant currents
J.This means H' is a solution of

fﬁﬂd;://vf-dfi (4)

This is in general not a sourcefree physical field.So it has to
be corrected by a second part that comes up for the sources
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For all current contributions are already represented by ﬁ',
(H - ﬁ’) can be described by a scalar potential ¢y and the sum
of both H' — gradgy is the physical field that solves both of
Maxwell’s equations simultanuously.So the magnetostatic prob-
lern is reduced to a direct solution for H' given by the currents
and by an iterative solution for ¢y, where the same procedure
as in electrostatics can be used. The fact that H' only has to
fulfill the mathematical requirements of (4) gives a lot of free-
dom for its construction . Even so some procedures used in
distributed codes need a tricky strategy to do this construe-
tion. We use a new and simple procedure developed at KfA
Juelich [10] that guarantees an easy performance independent
of the type of problem and boundary conditions. This casy
procedure even allows to choose Hina way that makes its
contributions small in permeable materials and so reduces the
problem of cancellation errors compared to other procedures.
First preliminary runs for magnetostatics indicate that the new
procedure for H'is as easy to handle as the mathematical the-
ory states.First applications, accuracy tests and cpu time com-
parisons are just starting.

Fircal remarks

Up to a few improvements and additions to be made, the 83
module has been put together.Compared to other codes im-
provements have been made in the treatment of open bound
aries, in the calculation of the part of the magnetic field de-
scribed by the "curl”-equation alone and as & fast solver a
multigrid solver has been added as optional choice. Now a
phase of testing and comparing with measurements and other
established codes begins.
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