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Abstract 

Existing theories predict that, the higher the 
mode number is of a longitudinal bunched beam 
instability, the higher is likely to be the frequency 
(or range of frequencies) of the instability excitation 
fields. In this paper a different result is found with 
all modes having a similar upper frequency limit for 
the fields but with the odd and even order modes having 
a dissimilar range for the possible frequencies. The 
relevance for uncoupled bunch, coupled bunch and mode 
coupling instabilities is discussed. 

Introduction 

A bunch train with a stationary distribution of 
particles in the bunches has a spectrum that extends up 
to a frequency approximately equal to the inverse of 
the bunch duration. The bunch harmonics are the only 
carrier frequencies available to sustain a longitudinal 
bunched beam instability. Yet the general theory, as 
developed by Sacherer [I] and others, predicts that the 
Instability excitation frequencies may be very much 
higher than the bunch frequencies. Form factors are 
derived for the different instability modes which 
indicate that the higher the mode number, the higher is 
likely to be the excitation frequency. If this 
prediction of the general theory is correct, how is the 
beam able to convey information at excitation 
frequencies higher than the bunch frequencies? 

The general theory is developed from the one 
dimensional Vlasov equation, with the use of polar 
co-ordinates (r.6) in the longitudinal phase space 
($,a. A two dimensional density in this phase space, 
Yr(r, o), is assumed to be of the form: 

‘v,(r) + C m Rm(r)e imeeip (m) t Uncoupled Dipole Mode Motion 

where m is the instability mode number. 

The simplest case to consider is the dipole mode 
of instability (m=l) for uncoupled bunch motion (n=O). 
Then, it is possible to re-arrange the Vlasov equation 
and solve directly for the radial function, Rl(r), 
leaving a phase equation for coherent dipole motion to 
be solved. This is the equation originally solved by 
K k’ Robinson [2] for a beam interacting with the 
fundamental resonance of the accelerating cavities, in 
the absence of any feedback systems; the solution is a 
fourth order equation which may have unstable roots in 
two different frequency regions. It is of interest, 
for this speciftc case, to make a detailed comparison 
between the Robinson and the general theory, as the 
latter leads to a first and not a fourth order equation. 

For comparison, it is convenient to consider three 
separate expressions, the coherent phase equation, the 
cavity transfer function for modulations of drive 
current and an expression for the modulation components 
of beam current. In each case, Robinson uses a 
different relationship than that developed in the 
general theory. Firstly, for the coherent phase 
equation, there is one perturbation due to the phase 
modulation and one due to the amplitude modulation of 
the accelerating voltage; Robinson uses both, whereas 
the general theory neglects the phase modulation term. 

Hence, Rl (r) = - 2 $ d yo/dr 

and it remains to solve for p from the coherent phase 
equation (1)) the complex cavity transfer function (2) 
and the beam current modulation (3): 

(2 + n” 1 0 = s2(CIpv) - a2 sinqs (v/V) . ..(l) 

v/v f jc 6 v = G(jw,ip) i! Ib/V . ..(2) 

. _ i; lb 

This is an important omission, for coherent dipole 
motion involves the both terms (while the odd and even 
higher order modes involve only the former and latter 
respectively). Secondly, for the beam cavity 
interaction, Robinson correctly uses the equivalent of 
a complex transfer function, whereas the general theory 
evaluates the products of the complex cavity impedance 
and beam current component at each beam frequency, with 
a correction term for the cavity bandwidth. Thirdly, 
for the beam current modulations, a major difference 
emerges between the two theories. Robinson considers 
dipole motion as phase modulation of the fundamental 
beam current component. The general theory uses a 
Fourier expansion of the beam current modulation in 
terms of the longitudinal phase space parameter 0 . 
Such an expansion is invalid, however, for though the 
unperturbed line charge density is periodic in &, the 
modulation is not. Thus, the form factors of the 
general theory are developed from an incorrect premise. 

A modif ied theory is now developed, first 
extending the Robinson theory to include parasitic mode 
excitation of the dipole mode, and then to the case of 
coupled bunch dipole motion. Also considered is the 
special case of RF feedback for the main accelerating 
system. Higher mode motion is analysed from the Vlasov 
equation, separating the radial mode functions, R,(r), 
by analogy with the method for the dipole mode. The 
theory is simplified by the use of a dual complex 
number representation for modulated signals, with one 
complex number to represent the carrier and a second 
for the modulation components. 

Revised form factors are developed and their 
relevance for mode coupling instabilities is discussed. 

The Sacherer form of the Vlasov equation for the 
dipole mode may be rearranged and approximated to the 
following form: 

(s2 + n2) Rl(r) R( 2i f&c?) eQt = - sin @$!$2 (s2 + n2/4 

. 
where (r,B) are polar coordinates in ($,-#N /!?) space, 

9 is the 2-D stationary bunch density, 
R’(r) is the radial function for the m = 1 mode, 
r:‘is 2rx synchrotron oscillation frequency, 
R Is the real part of the argument (exp ie)/Zi, 
$ is the coherent phase motion ($ exp (ipt)) and 
s (zd/dt) = ip, with p the complex frequency. 

= lb ( ,I ~.~-,p ) e-j’s . . . (3) 
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Here, V is the cavity voltage, 
v is the amplitude modulation of V, 
ci? is the phase modulation of V, 

v is the beam current modulation and 
:ig w, ip) is the dual complex number 
representation of the cavity transfer ftlnction. 

For the phase modulation of the beam current, a 
Linear approximation is assumed for the usual Ressel 
function expansion. The reference phase is that of V, 
and I is the amplitude of the relevant harmonic of the 
unper urbed e beam current. Input modulation 1s 
represented by exp(jwt) exp(ipt), with w and p the 
angular frequencies of the carrier and modulation 
respectively. In this notation, a transfer function 
response is represented by: 

iij Cc, (G(jw,ip) e W) ejwt ) / (cos wt cos pt) 

where ii is the real part of the complex argument with 
j assun&d constant and a 

d 
is the real part of the 

subsequent argument in w ich j is assumed complex. 
Typical G(jw,ip) functions for AVIA are: 

(jw + ip) I, for an inductance L, 

((jw + ip) C)-’ for a capacitance C. 

Such transfer functions are the composite response 
for both the upper and lower sidebands of the 
modulation. Alternatively, the response may be found 
for individual sidebands; for example, the responses 
for a cavity of loaded shunt resistance, R, loaded 
quality factor, Q, and angular resonant frequency, wo, 
are : 

R(l 7: ij) / 2 (1 + (2Q/wo)(jAw + ip)) 

where c: w = w - w and the - and + signs refer to the 
upper and lower gidebands respectively. The terms in 
(ij) are the quadrature terms associated with single 
sideband modulation. There is cancellation of the (ij) 
terms for the composite response. 

Sometimes it is necessary to consider the single- 
pass transient cavity response in addition to the 
multi-turn response. This is the case for very large 
rings where the revolution time Is of the same order as 
the cavity time constant. To obtain such a single-pass 
response, it is necessary to know the detailed form of 
the beam cavity interaction or to assume an appropriate 
model for the cavity. 

In the special case where RF feedback is used in 
the final stages of the cavity amplifier systems, there 
is a modified form of G(jw,lp) for the composite cavity 
response : 

R(1 + A exp(-(jbw + ip)T) + (2Q/wo)(jliw + ip))-’ 

Here A and T (= 27 k/w ) are the open loop feedback 
gain and delay respectively, with k an integer. This 
form of G(jw, ip) is valid only if the single-pass 
response may be neglected; then equations (l), (2) and 
(3) may be combined to give a fourth order equation: 

S ’ + b3s3 + b2s2 + bLs + b = 0 
0 

with b 
0 

= R’(C2 + Ow’ + CDAw/((l + A) co6 f$,) 

bl 
= 0,” b3 = 2 R2 c 

b2 = (C’ + Aw” + 112) 

C = (1 + A)/(2Q/wo - AT) 

D = Rib/v 

For the case of no RF feedback, A = T = 0 and the 
fourth order equation reduces to that of Robinson. For 
the case of RF feedback, there are three possibilities 
for lnstahility. Two conditions are as for Robinson, 
viz instability when the cavity is detuned in the 
direction opposite to that required for beam loadinc 
compensation, and instability under react.ive 
compensation above certain ratios of beam to cavity 
power. For no RF feedback, the ratio is unity; for RF 
feedback, the ratio may be much higher. The third 
condition for instability occurs if the feedback gain, 
A, is increased above the value Q/kn. The equation 
becomes of higher order when low frequency loops are 
added for control of cavity field amplitude, tunhg , 
beam radial position and coherent phase motion. Then, 
there is coupling between the loops due to the heam 
loading but it is minimised by the use of the RF 
feedback. 

The coherent phase motion is further modified if 
there is dipole mode excitation of both the main and 
parasitic cavity resonances. From equation (3), it may 
be seen that the beam current modulation is 
proportional to the amplitude of the associated beam 
current harmonic. Parasitic mode excitation may thus 
occur at any frequency within the unperturbed bunch 
spectrum, which extends up to the inverse of the bunch 
duration. This is in contrast to the prediction of the 
general theory, where the form factor for the dipole 
mode is shown to be finite up to frequencies twice as 
high. The parasitic resonance must be close to a 
multiple of the main RF frequency to influence the 
uncoupled dipole mode motion. The more general case is 
when the parasitic resonance is close to a harmonic 
frequency of the ring but not to a multiple of the main 
RF frequency. In this case, coupled bunch dipole or 
higher mode motion may be excited. 

Coupled Bunch Dipole Mode Motion 

If there are M circulating bunches in a ring 
(M < h), there are M coupled bunch modes of oscillation 
for each value of m (m = 1 for dipole, m = 2 for 
quadrupole.... and h is the RF harmonic number). 

Coupled bunch motion may be excited via a parasitic 
or the main cavity resonance. Parasitic excitation of 
coupled or uncoupled dipole mode motion may be analysed 
as follows. Consider the case of h equally populated 
bunches undergoing dipole motion at coupled bunch 
number n (- 0, 1, . . ..(h-1)). with n = 0 corresponding 
to the uncoupled case. If only one value of n is 
excited at the complex coherent frequency (z n), it may 
be shown that the additonal angular frequencies that 
appear in the beam spectrum, for a revolution frequency 
wr/2n are: 

i’,hwr + p1 or p2 with e = 0, 1 . . . . . 

PL = p+nwr , p2=p-nwr 

The frequencies PL and p2 converge for n = 0. The 
parasitic resonance (at w ) is excited most strongly 
by the sidebands linked t? one particular value of P. 
The excitation may be obtained, as previously, by a 
composite response G(jw, ip), but with&w = Lhw - w 
and the modulation frequencies at pL or p2. Por tfi& 
former (p,) and the latter (p,), the sideband pairs are, 
respectively: 

(kh + n)wr + p and (eh - n)w, - p. 

(kh + n)w - 1: p and (eh - n)wr + p. 

The coherent phase motion is found from modified 
forms of equations (l), (2) and (3). In (1). sin 4, is 



200 

approximated by sin a$ ; in (Z), the new Aw is used in 
G(jw,lp) and p is repfaced by pl 
following form of AI.~ is used: 

or p2; and in (3) the 

AI = 25 Ii e ji(3~/2 
b 

- g) J 
1 

(L( A+ 
v - $1) 

where IQ is the amplitude of the e-th bunch frequency 
harmonic in the unperturbed beam current. It may be 
written in terms of an integral involving .I (fir) and 
y (r). 
eluation 

Combining (l), (2) and (3) gives a fousth order 
in 8, but now with complex coefficients, 

involving terms in i. It may be reduced to two 
simultaneous fourth order equations, with variables the 
real and complex parts of the coherent frequency. 

The motion becomes more complex when the bunches 
are not equally populated or when there are missing 
bunches. In this case, each bunch motion is described 
by a fourth order equation in terms of the motion of 
each of the other bunches. Then, for M bunches, there 
are M coupled fourth order equations to be solved. 

Coupled bunch feedback systems sometimes use just 
single sideband modulation for the feedback. Such 
feedback may be analysed by use of the single sideband 
transfer functions given in the previous section. 
Coupled bunch frequencies appear in the spectrum in 
pairs at nearly the same frequencies eg (eh + n f p) w . 
Since the transfer functions are different for the tw6 
frequencies, feedback to damp one mode may antidamp the 
other and vice-versa. Then it is necessary to 
transform appropriately the individual frequency 
components. 

Odd Order Higher Modes 

The appropriate Vlasov equation is as before but 
with 0 (on LHS) replaced by mn, R (r) by R (r) and the 
argument (exp 1 E )/2i by (exp !lme)/(m +ml)i, where 
m = 3, 5. 7 . . . 

Excitation currents and fields are of the form 
exp (j wt) exp (ipt) with wt = $ and p = pl or p . 
Then the amplitude modulations of field correspond $0 

sin (ir co6 0) terms and the phase modulations to 
co6 (kr cos@) terms. These may be expanded in terms of 
Bessel functions. 

sin (Er cos0) = 2 Cy (-1) n+l J2n-1(Er) cos(Zn-1) 6 

cos (ilr cos0) = 2Zy (-l)“J,(&r) cos 2n0 + J,(%r) 

From the form of the Vlasov equation and the Bessel 
function expansions, it is seen that the odd-order 
higher modes may only be excited by the phase 
modulation field components. Mode m = 3 excitation is 
related to the sum J2(Lr) + J,(ilr) and hence to J3(&r): 

J m+l(2r) + Jm-l(er) = 2mJm(ar)/er 

Similarly, mode m = 5 is related to J5(er) and the 
order of the mode turns out to be the same as the order 
of the associated Bessel function. By analogy with the 
dipole mode, the radial function may be separated: 

R,(r) = (-l)(m+1)‘2 (2m(m + 1) J,(er) /%r) dYI, ,$ 
dr 

The coherent motion for the odd order modes is 
characterised by an oscillation in phase and energy of 
the centre of gravity of the bunches. This corresponds 
to phase modulation of beam current with an amplitude 
given by the AI. formula of the last section and a 
complex mode P requency , rmn . 
proportional to IQ 

Since A Ib is 
and is independent of m, the 

possible range of excitation frequencies corresponds to 
the unperturbed bunch spectrum and is the same for all 
the odd order modes. 

The mode equations may now be developed (using 
small angle approximations) in terms of the phase 
motions of the bunch centres: 

(F? + m ‘$13 ((1 + (ZQ/wo)ipl 2)2 + ((2Q/wo)ii w)’ ) 6 = 
L 

2’ H 4 ((! + (2Q/wo)ip1 2! cost+ (2Q/w,)aw sinill) 
, 

with H = m2 D e IX/I1 and a = P(3n/2 -OS). 

Even Order Higher Modes 

The VI asov equation is unchanged but now the 
excitation is due to the amplitude modulation of the 
fields. Again the order of the mode Is the same as the 
associated Bessel function excitation term. 

Even order modes are characterised by no coherent 
motion of the bunch centre but by an oscillation of the 
bunch phase extent, $ . This corresponds to amplitude 
modulation of the brunch current harmonics at the 
complex mode frequency, with amplitudes: 

AI& = (aI,/a$b) e j 1(3n/2 -Qs)A4 
b 

The derivative of 1~ with respect to $ b now determines 
the excitation spectrum. The upper frequency limit to 
the spectrum is as for Ig, but the lower limit is 
different; eg for short bunches, the derivative is zero 
for the lower harmonics. All the even order modes may 
be excited over this reduced frequency range, and it is 
adequate for both even and odd modes to damp parasitic 
cavity resonances over the frequency range of the 4 
spectrum. 

The radial functions for the even order modes are: 

Rm 
E (-p/2 (2m(m+l) .I (er)/f,r) dl, A$ m 

dr 
b 

and the mode equations are identical to those for the 
odd order modes, but with rb replaced byA$b and: 

H = - D (a12/a~,)/11 CO9 +s 

Mode Coupling 

The principle of mode coupling is as described in 
[l] but the detailed mechanism is different here due to 
the higher order of the equations and the different 
form factors. The form factors, H, are proportional to 
Iefor the odd and to (aIe/a$b) for the even order modes. 

Coupling occurs when mode frequencies approach one 
another. Phase modulation of beam current excites both 
phase and amplitude modulation of V, the former driving 
odd and the latter even order modes. Amplitude 
modulation of IQ then complements the coupling. 

Mode frequencies may cross because of the different 
range of excitation spectra for the odd and even modes. 
The extended spectrum for the odd modes increases the 
induct lve contributions to the frequency shifts. 
Certain combinations of impedances may lead to mode 
coupling both below and above transition energy, in 
contrast to earlier findings. 
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