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Abstract Among the different methods of beam diagnostics
available in modern storage rings three classes are presented here
in some detail. The first two use the near-field of the beam mea-
sured by the position monitors. The optical functions - betatron
phase advances and beta functions - are obtained by exciting
a betatron oscillation and measuring its phase and amplitude
at the beam position monitors around the ring. Modern read-
out electronics, which memorize the readings taken in successive
turns, are particularly well suited for this method. A second
group of measurements is concerned with the properties of the
beam itself. The frequency distribution of the particles can di-
rectly be deduced from the beam response to a harmonic exci-
tation. Such measurements give also the beam stability and the
impedance of the beam surroundings. The third class observes
the far-field of the beam emitted as synchrotron radiation. Us-
ing this radiation for imaging or measuring its angular divergence
gives the transverse beam dimensions.

1 Introduction

A wide range of diagnostic tools are available to make observation
of the beam parameters and behavior in a storage ring. We will
concentrate here on the most commonly used non-destructive de-
vices, namely beam position intensity monitors and synchrotron
light detectors. The beam position and intensity monitors have
a wide range of applications. We will concentrate here on two
representative examples. In the first case an excited betatron
oscillation is observed in phase and amplitude at the different
position monitors around the ring. Such a measurement allows
to deduce the betatron phase advance between the observation
points and the relative value of the beta functions at those lo-
cations. It can be used to check the optics of a machine. In a
second example we measure the phase and amplitude of a beam
oscillation with respect to the force which excites it. This ob-
servation serves to obtain information mainly about the beam
itself but also about its interaction with the surroundings. The
synchrotron radiation monitors give such information in a more
direct way through a visual image of the beam cross section. In
each of the three cases we discuss briefly the accuracy as well
as the limitations of such measurements and compare the results
with theoretical expectations. This will be done by giving partic-
ular examples in some detail which should be representative for a
wide range of similar measurements. | would like to apologize for
choosing mainly those cases where I am familiar with the details.
The same or very similar experiments have been carried out at
many other machines and are often part of every day operation.

2 Measuring betatron phase advances and
relative beta functions

Measurement done with an unbunched beam

A betatron phase advance measurement is carried out with a
coasting beam by exciting it with a frequency which is swept

through a betatron side band

wg = wo(Q + n) (1)

where wp is the revolution frequency and Qis the betatron tune.
The integer n goes through negative and positive numbers lead-
ing to frequencies with both signs. With the instruments positive
frequencies are observed and the frequency w; gives an upper
side band to the revolution frequency harmonics if n > -Q and
a lower side band if n < —Q. The resulting betatron oscillation
is observed with two position monitors located at the azimuthal
angles 8, and 8 of the ring. The signals are than compared for
the relative phase and amplitude by a network analyzer which
also provides the RF-signal for the beam excitation. Such an
experimental set-up is shown in fig. 1 for the example of the
ISR [1]. The beam monitors are sensitive to the dipole moment
D = yly of the circulating current Iy having the displacement
y. For an excited betatron oscillation of a coasting {unbunched)
beam this dipole moment as a function of ¢ and 8 is given by

.o | B(6)
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with £{8) = ¢(8) ~6(Q +n), and where ¢{8) is the betatron phase

advance and 3(8) is the value of the beta function. By compar-

ing the measured phase {of the signals from the two position

monitors we are actually measuring

AL = £(02) — £(61) = $(62) - $(8:) — ABQ + ), (3)

where A8 = 8, — #,. The desired phase advance A¢ between the
two monitors is related to the measured phase difference AL of
the signals by

Ap = $(81) — ¢(h) = AL+ A(ONQ + n). (4)

For a real experiment we have to consider the finite length L of
the cable connecting the monitor to the network analyzer in
which the signals travel with the speed ¢/, It leads to a correction
of the above relation

Ad= AL+(Q +n)(A0 + T(Ls— L) (5)

A coasting beami has no time structure which could be used to
calibrate the cable lengths. However the effect can be reduced by
measuring the phase advance using two frequencies correspond-
ing to different values of the integer n. This is specially advanta-
geous to chose an adjacent upper and lower side band {also called
fast and slow wave). While doing the phase measurement we can
also compare the amplitudes Dof the observed oscillation from
which the ratio of the beta functions at the two locations can be
obtained. The example exhibited in fig. 1 shows the lay-out and
the pictures for the phase and amplitude displayed by the spec-
trum analyzer for the fast and slow wave. The obtained results
for about one third of the ISR are shown by plotting the expres-
sion ¢(8) —~ Q8 for the phase to keep the curve in a reasonable
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Figure 1: Measurement of the betatron phase advance in the ISR

vertical range. The relative beta functions measured have been
normalized with the known average value. Both parameters are
shown together with the calculated values. The agreement seen
in this figure seems to be very good. A more detailed analysis
gives an rms. deviation from the calculation of about 3% for the
phase and about 11% for the beta (unction. The calculation is
of course also not without error since the optics including or-
bit distortions at the sextupoles is known with limited accuracy
only. The measurement errors were estimated to be about 3°
for the phase and 10% for the beta functions. More accurate
measurements have been done in the SPS [2] and at CESR [3].

Measurements done with a bunched beam

Measurements can be done with bunched beams using the same
method. Since the beam provides now a timing signal the cable
lengths can be can be calibrated easily. However, hunched beams
allow to do this phase advance measurement in a more elegant
way. The bunch intensity signal can be used to trigger the elec-
tronics of the posilion monitor to make a 'sample and hold’ of
its signal and store the result in a memory. After a measure-
ment this memory contains beam positions which are no longer
related to time but to the turn number. The phase advance mea-
surement can now be carried out by kicking the beam and let it
execute a free betatron oscillation. The signals from two or more
position monitors are collected in the respective memories for a
certain time. The stored data can then be Fourier analyzed to
get the betatron frequency. Comparing two such analyses gives

the measured phase A¢ between the signals from the two moni-
tors from which the betatron phase advance is obtained directly.
A phase advance measurement carried out at SPEAR [4] by this
method is illustrated in fig. 2. Signals obtained from a pair of
position monitors are directly displayed on a x-y plot giving a
Lissajou figure of the oscillation for the cases of 12° and 270°
phase advance between the monitors. The result of the phase
measurement around the ring is shown and compared with the
one calculated from the model of the machine optics with the
two low beta insertions marked by a line. No difference between
measurements and expectations can be seen on this scale. A
detailed analysis indicates an average error of about 0.4°.

Discussion

Phase measurements need relatively clean signals from the po-
sition monitors to allow a plase comparison at all. However,
if this is [ulfilled they are extremely accurate. Contrary lo sig-
nal sizes, the phase is very little influenced by the geometry of
the monitor or by amplifiers. The effect of the unknown ca-
ble length can be well corrected with the methods mentioned.
Modern position monitors often digitize the signals directly and
put them in a memory to be read by the control system [5].
Phase measurement by the digital method can now become a
routine operation. They can be used to check the optics of a
machine and to find and locate possible focussing errors. With
the improved accuracy it might be possible to also measure the
chromatic functions like dé/dp by carrying out experiments at
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Figure 2: Bunched beam phase advance measurement in SPEAR

(4]
different momenta Ap of the beam. If we had a position mon-
itor at each quadrupole the phase measurement would allow to
reconstruct the beta function within a short lens approximation
all around the ring. One important area where the phase mea-
surement is not sufficiently accurate is the investigation of low
beta sections. Here, the phase advance is always close to = and
depends only weakly on the value of the beta function in the in-
teraction point once it is small. Measurements of tune variation
versus quadrupole strengths have to be done in addition.

3 Beam transfer function
Response of a coasting beamn to transverse excitation

This measurement uses a very similar set-up and the same in-
strumentation as the phase measurement of a coasting beam de-
scribed before. However we compare now not the signals from
different monitors but relate the response with the excitation.
We consider now a coasting beam with a certain distribution of
its particles in momentum dN/dp = F,(Ap), where Op = p—-pois
the deviation from a certain central momentum py. Particles with
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different momenta will in general also have different betatron fre-
quencies wg = wp(@ + n) as observed by a stalionary monitor
due to two effects: the dependance of the revolution frequency
wp on momentum through the momentum compaction factor a
and the dependance of the tune Q on momentum through the
chromaticity

A 1dQ A A
Do =wofa— 17122 aQ =190 _ g0 ()
P pdp p P
giving A
Awp = (Q = (a—1/7)Q + n))wo—p’f. (7)

Through this relation the distribution F{Awg) in the betatron
frequency can be obtained from F,(Ap) through a simple linear
scaling. It is important to note that for this case of a coasting
beam this distribution is given by external parameters and the
momentum and does not depend on the betatron amplitude we
will excite.

We will now apply a harmonic transverse acceleration with
frequency w to the beam and excite a betatron oscillation. We
consider first the response of a narrow ring of particles having
the same momentum and start with the equation of motion in
the vertical coordinate y {6}

dzy A iw

I TweQly =G (8)
We seek a solution which look for a stationary observer as a wave
v = jexp(i(nd — wt)). Using dy/dt = i(nw, — w)y we get

-1

T (- wp)w —wag) @)

Qulte

where we introduced the slow and fast wave betatron frequencies
wg, = wo(Q — n)and wg; = we(Q + n) and assumed that the
beam is observed close to the kicker (8 = ). The response will
only be large if the exciting frequency wis close to either the slow
or the fast wave betatron frequency. Taking the first case we get

v+ 1
G 2Quwow —wg,

(10)

We consider now the particle distribution in wj,and calculate
the center of mass motion by forming the weighted average of
the single particle response

. G Flwp,)
<y> = 2QweN J w —wg, dw.s
_ d F(w_[jl,) . ’ X
= 0w [PV / o w;a,.dwa" tinF(w)|. (11)

The limits of the integral have to cover the distribution of the
side band of interest. The integration covers a pole which leads
to the residue the sign of which is not determined. The reason for
this is the fact that we have not specified the initial conditions
and the integral includes the possibilities of growing or decaying
oscillations. This becomes clearer by differentiating the above
equation and comparing the velocity ¢ = —iwy of the response
with the acceleration G

Flwg,)

W W3,

<y>

[nF(w) - iPV/

w
= Sou } .(12)

The first term of the right hand side of this equation is real
and positive which means that the velocity yand the accelera-
tion (are in phase and energy is absorbed by the beam. The
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second term is imaginary, meaning that velocity and accelera-
tion are out of phase. From the point of view of diagnostics the
first term is most important since it gives directly the particle
distribution F(wg,)in incoherent betatron frequency wg, which
in turn is related to the momentum distribution of the particles.
To make the above expression more suitable for application we
introduce the FWHM betatron frequency spread § in the beam
and normalize with it the frequencies {3 = wy,/5,60 = w/S as
well as the distribution f(é3) = SF(wg,)/N. Furthermore we
normalize the response by multiplying with factors which are
approximately constant.

2QuoS <y >
==

Ry - f(fﬂ)

<P >
= ~2QS LT = —zf Pt

= wfto) - ipv [ T8 g, (13)
{() - Tig

Before we go to examples we have to consider the influence of
the impedance of the beam surroundings. In the presence of a
transverse impedance Zr{w)the oscillating beam will introduce
fields in the impedance which apply an additional force to the
beam. The acceleration G contains now an external part due to
the excitation by our applied signal and an additional part due
to the impedance [6]

ieIuZT(w) <g>

G =G 2 Rymg

(14)
We are only interested in the ratio between the beam oscilla-
tion and the external acceleration. Including the effect of the
impedance we get for the inverse of the normalized response
Do e ._.EE.IP.?}‘..._.‘ (15)
drymec?@QS

The impedance shifts the inverse response by an amount pro-
portional to —Z7. We will now discuss the experiment outlined
in fig. 3. The beam is transversely excited with a frequency
swept through a lower betatron side band of a coasting beam.
The response is compared to the exciting signal in phase and
relative amplitude as shown on the network analyzer display. To
make the shiflt of the inverse response visible the second term on
the right hand side of (15) is varied by changing the spread S
through ' (7). This inverse response is plotted as the real part
against the imaginary part in fig. 3 for the different values of Q.
[t can be clearly seen that the curve gets shifted more and more
with decreasing Q'. To check the form of the curve the parti-
cle distribution in momentum F,(Ap) has been obtained from a
longitudinal Schottky scan and the particle distribution F(wp,)
calculated from the relation (7). From this the inverse response
in absence of impedance has been computed and plotted in fig. 3.
It has with quite good accuracy the same form as the measured
inverse responses but is of course not shifted. From the measured
shift the transvere impedance has been determined. It is show
at the bottom of fig. 3. For the resistive part it agrees well with
the expected resistive wall impedance at low frequencies. The
reactive part has in addition a constant inductance consistant
with observations by other methods.

Response of a bunched beam to a longitudinal excitation

We are going now to a bunched beam and consider longitudinal
excitation of dipole and quadrupole oscillation which can be done
by phase or amplitude modulation the RF-voltage. The situation
is considerably more complicated than in the case treated in the
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Figure 3: Measurement of the transverse response of a coasting
beam
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Figure 4: Measurement of the quadrupole mode transfer function

previous subsection. The frequency spread is now given by the
amplitude dependence of the synchrotron frequency in the non-
linear ri-bucket. We will not give any derivations here but refer
to publications on this subject [7,8,9] and give only the results. It
can be shown that for a stationary bunch the particle distribution
is a fJunction of the Hamiltonian H only and is of the form g(H).
The synchrotron frequency w,{H) will also be a function of the
Hamiltonian. The beam response Ry for the dipole and R, for
the quadrupole mode can then be written

o d8(H) gy o d9H) pr2
R(,:cd/(] IR Rq:cqfn S (16)

The response of the quadrupole mode measured at SPEAR at
relatively low current is shown in fig. 4 and compared qualita-
tively with the calculation. The agreement is quite good. At



larger currents the effect of the impedance becomes important.
It will lead to a shift of the inverse response but will at the same
time alter the Hamiltonian and the frequency distribution which
makes the measurements complicated [10].

Discussion of the beam transfer function

For coasting beams the beam transfer function is relatively easy
to measure since the undisturbed beam does not produce any
large signals in the monitors. The particle distribution and the
low frequency impedance can be measured well. As a special ap-
plication feed-back systems can be checked by observing the shift
of the inverse response when the system is turned on. Bunched
beams give large common maode signals which make the measure-
ment of the beam response more difficult. In addition the form
of the transfer function is more complicated and the impedance
will change the frequency distribution. In such cases the beam
response to a kick might often be a more direct measurement of
properties like beam stability.

4 Investigating the beam with synchrotron
radiation

Imaging of the beamn cross section

In nearly all electron machines one forms an image of the beam
by using the visible part of the radiation to form an image of the
beam cross section with a lens. It is interesting to note that due
to the small natural vertical opening angle ¥,., on

LAY (A
ot () ()
T\ A p

diffraction is relatively important and limits the resolution to

T~ A3l (18)

(17)

where ) is the wave length of the radiation used, A; the critical
wave length and p the radius of curvature. For large machines
like LEP the above expression indicate a resolution of about 0.5
mm which is not sufficient. Going to shorter wave lengths or
a locally smaller bending radius helps. Furthermore the source
point of the radiation should be located at a large value of the
beta function.

Observing the angular divergence of the emitted radia-
tion

This method is less widely used and will be illustrated in more
detail. The divergence of the radiation consists basically of two
‘parts, the natural divergence of the radiation mentioned above
and the angular divergence of the electron beam we want to
measure. Clearly the optimum source location is a place with
a small value of the beta function. Using synchrotron radiation
from bending magnets this method will only give information
about the vertical beam emittance. However, the radiation {rom
undulator allows measurements of both planes. We will discuss
such an experiment done at PEP [11] A plane, harmonic undu-
lator with N, = 26 periods of length A, = 77 mm was used. The
emitted radiation went through a monochromator tuned to the
fundamental frequency of the undulator, fig. 5. At the end of
this beam line, L = 58 m from the source the size of the photon
beam was measured. It can be shown [11] that the natural rms.
width of the monochromatized undulator radiation is given by

_1/3
" yY 4rN,

(19)
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Figure 5: Measurement of the PEP emittance with undulator

radiation

The photon beam size due to the finite emittance ¢ of the elec-
tron beam can be obtained by extending the lattice functions
B3(0), a(0)and 4(0) at the source to the screen at the distance L
where the photon beam size is measured by [12]

B(L) = B(0) ~ 2a(0)L + 4(0)L*.

This gives for the contribution of the emittances to the pho-
ton beam size 055 = y/e4.(L) and oy = VeyBy(L). For the
horizontal plane there is also a contribution from the dispersion
at the source point. Subtracting quadratically the contribution
due to the natural opening angle of the undulator radiation, due
to the dispersion and due to the resolution of the measurement
device from the measured beam size the contribution due to the
emittances and the emittances themselve can be determined. For
the PEP experiment the following results were obtained for the
uncoupled emittance ¢g = €. + ¢, For the normal lattice at 14.5
GeV the measurement gave 86 nm rad while 117 nm rad were ex-
pected. For the low emittance lattice at 8 GeV the measurement
gave 13.3 nm rad while 9.9 nm rad were expected. The discrep-
ancies between measured and calculated values can probably be
caused by the errors in the lattice functions at the sources.
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