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Abstract Among the different methods of beam diagnostics 

available in modern storage rings three classes are presented here 
in some detail. The first two use the near-field of the beam mea- 
sured by the position monitors. The optical funrtions - hetatron 
phase advances and beta functions - are obtained by exciting 
a betatron oscillation and measuring its phase and amplitude 
at the beam position monitors around the ring. Modern read- 
out electronics, which memorize the readings taken in successive 
turns, are particularly welf suited for this method. A second 
group of measurements is concerned with the properties of tht: 
beam itself. The frequency distribution of the particles can di- 
rectly he deduced from the beam response to a harmonic rxci- 

tation. Such mPasuremCnts give also the beam stability and the 
impedance of the bram surrouudings. The third class observes 
the far-field of the beam emitted as synchrotron radiation. Us- 
ing this radiation for imaging or measuring its angular divergence 
gives the transverse beam dimensions. 

1 Introduction 

A wide range of diagnostic tools are available to make observation 
of the beam parameters and behavior in a storage ring. We will 
concentrate here on the most commonly used non-destructive de- 
vices, namely beam position int.ensity monitors and synrhrotron 
light detectors. The beam position and inlensity monitors have 
a wide range of applications. We will courentrate here on two 
representative examples. In the first case an excited betatron 
oscillation is observed in phase and amplitude al the tliffrrrnt. 
position monitors around the ring. Such a measurement allows 
to dpdure the betatron phasr advance between the observation 
points and the relative value of the beta funct.ions at, those to- 
rations. It can he used to check the optics of a machinr. In a 
second example we measure the phiL9e and amplitude of a beam 
oscillation with respect to the force which excites it. This ob- 
servation sprvrs lo obtain information mainly about the beam 
itself but also about its interaction with the sllrroundings. The 
synrhrolron radiat iolk monitors give such information in a morp 
direct way through a visual image of the beam cross section. In 
each of the three cases we discuss briefly the accuracy as well 
as the IimitaCons of such measurements and compare thr results 
with theoretical expectations. This will be done by giving partic- 
ular examples in some detail which should br rcprcsentative for a 
wide range of similar measurements. I would like to apologize for 
choosing mainly thtrsr Cases where I am familiar with Ihe details. 
The same or very silllilar experiments have beru carried out. at 
many other Inachines and are often part of every day operation. 

2 Measuring betatron phase advances aud 
relative beta functions 

Measurement done with RII nnbunched bean1 

A hetatron phase advance measurement is carried out with a 
coasting beam by exriting it with a frequency which is swept 

through a betatron side baud 

f.Jil = wo(4 t 71) (1) 

where I*‘~ is the revolution frequency and Q is the betatron tune. 
The integer n goes through negative and positive numbers lead- 
ing to frequencies with both signs. With the instrumrnts positive 
frequencies are observed aud the frequency COP gives an upper 
side band to the revotut,ion frequency harmonics if n > -Q and 
a lower side band if R < -Q. The resulting betatron oscillation 
is observed with two position monitors located at the azimuthal 
angles B1 and O2 of the ring. The signals are than compared for 
the relative phase and amplitudr by a network aualyzcr which 
also provides the RF-signal for the beam excitation. Such an 
experimental set-up is shown in fig. 1 for the example of the 
ISR [l]. The beam monilors arc sensitive to the dipole moment 
D = yl, of the circulating current IOhaving the displacement 
y. For an excited brtatron oscillation of a coasting (unbunched) 
beam this dipole moment as a function of 1 and 0 is given by 

@k@) = ?Yo p(o) 
\J 

@!I cos (wpl + ((0)) ) (2) 

with ((0) - Q(e)--8(Q + n), and where d(B) is the betatron phase 
advance antt I?(@) is the value of the beta function. Ry rompar- 
ing the measured phase [of the signals from the two position 
monit,ors we are actually measuring 

A4 = t(b) -E(h) = Q(b) - d(h) - WQ + ?I), (3) 

where A8 = ff2 - 8,. The desired phase advance Adbetween the * 
two monitors is related to the measuwd phase difference At of 
the signals by 

A+ = d(b) s(h) = A( t A(@)(Q t- 71). id) 
For a real rxperinrrnt Y(‘P have to consider the finite length I, of 
the cable counecting the monitor lo thr network analyzer in 

which the signals travel with the spc4 c’. It leads to a correction 

of the above relation 

Ad, = At i (Q + n)(AO fi s( Cz - I;,)). (5) 

A coasting beam has no time structure which could be used to 
ralibrat.e the cable lengths. However the elfect can be reduced by 
measurirrg thr phase atlval~rr using two frc*(lurncies corresl>trnd- 
ing to different values of the integer 11. This is slmcially nclvanta- 
grous to chose an adjacent upper and lower side band (also called 
fast and slow wave). While doing the phase measurement WC can 
also compare the amplitudes Dof the observed oscillation from 
which the ratio of the beta Iunctions at the two locations can be 
obtained. The example exhibited in fig. 1 shows the lay-out nnd 
the pictures for the phase and amplitude displayed by the spec- 
trum analyzer for the fast and slow wave. The obtained results 
for about one third of the ISR are shown by plotting the expres- 
sion C,+(G) -- -. QOfor the phase to keep the curve in a reasonable 
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Figure 1: Measurement of the betatron phase advance in the ISR 

vertical range. The relative heta functions measured have been 
normalized with the known average value. Both parameters are 
shown togrthcr with the calculated values. The agreement seen 
in this figure sefms to he very good. A more detailed analysis 
gives an rms. deviation from the cnlculat,ion of about 3” for thr 
plmse and about 11% for the beta function. TIIP calculation is 
of c*urse also not without error since the optics including or- 
bit distortions at the sextupoles is known with limited accuracy 
only. The measurement errors were estimatrd to be about 3” 
for the phase and 10% for the beta functions. More accurate 
measurements have hcrn done in the SPS [z] and at CESR [RI. 

Measurements done with a buuched beam 

Measurements can bc done with bunched beams using the saner 
method. Since the beam provides now a timing signal the cable 
lengths can br tan br catibratrd easily. llowcv~r, bnnchrd brwns 
allow to do this phase advance measurement in a more elegant 
way. The bunch intensity signal can be used to trigger the elrc- 
tronics of the position monitor to make a ‘sample and hold’ of 
its signal and store the result in a memory. After a measure- 
ment this memory contains hcam positions which are no longer 
related to time but to the turn numbrr. The phasr advance mra- 

surcment can now be carried out by kicking the beam and let it 
execute a frrr brt,atron oscillation. Thr signals from two or IIHXC 
position monitors are collected in the respective memorirs for a 
certain time. The stored data can then be Fourier analyzed to 
get the betatron frequency. Comparing two such analysrs gives 

the measured phase iI( between the signals from the two moni- 
tors from which the betatron phase advance is obtained directly. 
A phase advance measurement carried out at SPEAR [4] by this 
method is illustrated in fig. 2. Signals obtained from a pair of 
position monitors arf directly displayed on a x-y plot giving a 
Lissajou figltre 1~1 Lhe oscillation for thr C~SCS of 12’ and 270’ 
phase advance between Ihe monitors. The result of tlie phase 
mrasurrmrnt amlund the ring is shown and compared with the 
one calculated from the model of the machine optics with the 
two low bet a insertions markrd by a linr. No difference between 
nrrasurements and expectations can be seen on this scale. A 
detailed analysis indicates an average error of about 0.4’. 

Discus&Ill: 

Phase measurements need relatively clean signals from the po- 
sition Irlonitors to allow a ptiasc rrnuparison at all. Iiowevrr, 
if this is fullillrrl they are extrPmcly accurate. Conlrary lo sig- 
nal sizes, the phase is rcry little influrncrd by thP gromctry of 
the monitor or by amplifiers. The effect of the unknown ca- 
hlr Irngth can be well corrPctcd wit,h the methods mentioned. 
Modern position monitors often digitize the signals directly and 
put, them in a mrmory to hc read by tile control system IF;]. 
Phase mcasurPmcnt by the digital method can now become a 
routine operation. They cm be used to check the optics of a 
machine and to find and locate possible focussing errors. With 
the improved accuracy it might be possible to also measure the 
rhrnmatic functions like dd/dp hy carrying out experiment,s at 
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Figure 2: Bunched beam phase advance measurement in SPEAR 
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different momenta ap of the beam. If we had a position mon- 
itor at each quadrupole the phase measurement would allow to 
reconstruct ttrc beta function within a short lens approximation 
all around the ring. One important area where the phase mea- 
surement is not sufficiently accurate is the investigation of low 
beta sections. Here, the phase advance is always close to r and 
depends only weakly on the value of the !]eta function in the in- 
teraction point once it is small. Measurements of tune variation 
versus quadrupole strengths have to be done in addition. 

3 Beam transfer function 

Response of a roasting bean1 to transverse excitation 

This measurement uses a very similar set-up and the same in- 
strumentation as the phase measurement of a coasting beam de- 
scribed before. However we compare now not the signals from 
different monitors but relate the rrsponse with the excitation. 
We consider now a coasting beam wit!1 a certain distribution of 
its particles in momentum dN/dp = F,(Ap), where Ap = p-pois 
the deviation from a certain central momrntumpO. Particles with 
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different momenta will in general also have different betatron fre- 
quencies wp = wo(Q + n) as observed by a stationary monitor 
due to two effects: the dependance of the revolution frequency 
o0 on momentum through the momentum compaction factor Q 
and the dependance of the tune Q on momentum through the 
chromaticity 

Au0 = W~(Q - I,+! , AQ = ;$$ = Q’$ (6) 

giving 

4s = (Q’ - (Ck - l,‘y”)(Q + n))w,,~. (7) 

Through this relation tlw distribution F( AUS) in the betat.ron 
frequency can be obtained from F’( Ap) through a simple linear 
scaling. It is important to note that for this case of a coasting 
beam this distribution is given by external parameters and the 
momentum and does not depend on the betatron amplitude we 
will excite. 

We will now apply a harmouic transverse acceleration with 
frequency w to the beam and excite a betatron oscillation. We 
consider first the response of a narrow ring of particles having 
the same momentum and start with the equation of motion in 
the vertical coordinate y [Gj 

!$ + W:Q2y = (je-iut 

We seek a solution which took for a stationary observer as a wave 
y = jjexp(i(n0 - wt)). Using dy/dl = i(nw, - w)y we get 

i -1 

2 = (w - WP..)(W - WPJ) 
(9) 

where we introduced the slow and fast wave betatron frequencies 
wp,, = wo(Q - n)and WPJ = wo(Q + n) and assumed that the 
beam is observed close to the kicker (0 = 0). The response wi!! 
only be large if the exciting frequency wis close to either the slow 
or the fast wave betatron frequency. Taking the first caSe we get 

i 1 1 
G -2QWO=- 

We consider now the particle distribution in wa,,and calculate 
the center of mass motion by forming the weighted average of 
the single particle response 

z: <$:a = - ~ 
2QWJV J F(%bl dwo r( w--o,, ” 
---?--- PV F(wp.‘)dtid,, rti-rrF(w) (llj 

= 2Qw,,N 1 J w - up,* 1 

The limits of the integral have to cover the distribution of the 
side band of interest. The integration covers a pole which leads 
to the residue the sign of which is not determined. The reason for 
this is the fact that we have not specified the initial conditions 
and the integral includes the possibilities of growing or decaying 
oscillations. This becomes clearer by differentiating the above 
equation and comparing the velocity jl = -iwy of the response 
with the acceleration G 

F(wA,) TF(W) - iPV _____ J 1 (12) 
w - WP,r 

The first term of the right hand side of this equation is real 
and positive which means that the velocity <and the accelera- 
tion Garc in p!lase and energy is absorbed by the beam. Thr 



184 

second term is imaginary, meaning that velocity ant1 accelera- 
tion are out of phase. From the point of view of diagnostics the 
first term is most important since it gives directly the particle 
distrihutiou F(ti/j,,) in incoherent Matron frrquency wd,, which 
in turn is relate(l to the momentum distribrltion of the particles. 
To make the above expression more suitable for application we 
introdllcr t,hr FWIIM Matron frequenry spread S in the beam 
and normalize with it the frequencies <p = wp,,/S,& = w/S as 

well as the distribution f([o) = SF(tip,.)/~V. Furthermore WC 
normalize the response by multiplying with factors which are 
approximately constant. 

R _ 2Qw,S< p > 
0 - 1= 

w G 

-2jQSy = -i 

E nf(to) - iPV / &4+ (13) 

Before we go to examples we have to consider the influence of 
the impedaure of the beam surroundings. In the presence of a 
transverse impedance Z~(til) the oscillating beam will introduce 
fields in the impedance which apply au additional force to the 
beam. The acceleration G contains now an external part due to 
the excitation by our applied signal and an additional part due 
to the imI)ecianre [O] 

G = GrzL - i 
efoZT(w) < f; > 

ZrrR-(mo ’ (14) 

We are only interested in the ratio between the beam oscilla- 
tion and thr rxtprnal acceleration. Including the effect of the 
impedance we get for thr inverse of the normalized response 

1 1 ecfoZT -=-- 
R Ro 4nymoc2QS’ 

(15) 

The impedance shifts the inverse response by an amount pro- 

portional to 2~. We will now discuss the exp&ment outlined 
in fig. 3. Tbr beam is transversely excited with a frequency 
swrpt throllgh a lower bctatrorl sidr band of a coasting beam. 
The respmsr is rompar~d to thr exciting signal in phase and 
relative amplitudr as shnrvl~ on t,he network analyapr display. To 
make thr shift of thr inverse rpsl)<>usP visible t,be second term on 
tllr right hantl sidr of (15) is varird by changing t.11~ spread S 
Lhrrmgh Q’( 7). ‘I’liis inverse response is plottrtl as the real part 
against thr imaginary part in fig. 3 for the different values of Q’. 
tt cali IX clearly seen that the curve gets shifted more and more 
with decreasing (3’. To check the form of tile curve the parti- 
cle distribut,ion in nIomentum F,( Ap) has been obtained from a 
longitudinal Schottky scan and the particle distribution F(wo,,) 
calculated from the relation (7). From this the inverse response 
in absence of inlpedanre has been computed and plotted in fig. 3. 
It has with quit? good accuracy thr same forni as the niea.~urerl 
inverse responses but is of course not shifted. From the measured 
shift t hr transvrrr imprdancr has bcpI1 daterniiued. It is show 
at the bottom of fig. 3. For the rrsistive part it agrees WC-U with 
the expected resistive wall impedanrr at low frequencies. The 
reactive part has iii addition a constant. inductance consistant 
with obsrrvations by other mrt,hods. 

Response of a t)iinrtied bean1 to a longitiidinitl excitation 

We are going now to a bunched beam and ronsidpr longitudinal 
excitation of dipole and quaclrrIpole oscillation wttich can br done 
by phase or amplitude modulation the RF-voltage. The situation 
is considerably more complicntecl than in the case treated in the 
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Figure ii: Measurement of the quadrupole mode transfer function 

previous subsection. The frequency spread is now given by the 
amplitude dependence of the synchrotron frequency in the non- 
linear rf-bucket. We will not give any derivations here but refer 
to publications on this subjrct [7,8,9] and give ouly the results. It 
ran be shown that for a stationary bunch the particle distribution 
is a 5>nction of the IIamiltoniari IT only and is of the form g(N). 
The synchrotron frequency w,(H) will also be a fuuctiou of the 
Hamiltonian. The beam response Rd for the dipole and R, for 
the quadrupole mode can then be written 

I 
m Hd = Cd 

M!!l If 
O” dfi dH, H, = C, 

I 

!mffz 
dN 

0 w -w,(H) 0 w -20,(H) 
dH. (16) 

The rrsponse of the quadrupole mode measured at SPEAR at 
relatively low current is shown in fig. 4 and compared qualita- 
tively with the calculation. The agreement is quite good. At 
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larger currents the effect of the impedance becomes important. 
It will lead to a shift of the inverse response but will at the same 
time alter the Hamiltonian and the frequency distribution which 
makes the measurements complicated [lo]. 

Discussion of the bearn transfer function 

For coasting beams the beam transfer function is relatively easy 
to measure sinre the undisturbed beam does not produce any 
large signals in the monitors. The particle distribution and the 
low frequency impedance can be measured ~~11. As a special ap- 
plication f&-back systems can be checked by observing the shift 
of the inverse responsr when the system is turnrd on. Bunched 
beams give larg? common mode signals which make the mrasurr- 
ment of the beam response more difficult. In addition the form 
of the transfer function is more complicated sntl the impedance 
will change the frequency distribution. In such cases the beam 
response to a kick might often be a more direct measurement of 
properties like beam stability. 

4 Investigating the beam with synchrotron 
radiation 

Imaging of the heatn cross section 

In nearly all electron machines one forms an image of the beam 
by using the visible part of the radiation to form an image of the 
beam cross section with a lens. It is interesting to note that due 
to the small natural vertical opening angle l/lrm, on 

diffraction is relatively important and limits the resolution to 

* - ~2Pp’13 (18) 

where X is the wave length of the radiation used, X, the critical 
wave length and p the radius of curvature. For large machines 
like LEP the above expression indicate a rtrsolution of about 0.5 
mm which is not sufficient. Going to shorter wave lengt.hs or 
a locally smaller bending radius helps. Furtharmorr the source 
point of the radiation should be located at a large value of the 
beta function. 

Observing the angniar divergence of the emitted radia- 
tion 

This method is less widely used and will be illustrated in more 
detail. The divergence of the radiation consists basically of two 
parts, the natural divergence of the radiat,ion mentioned above 
and the angular divergence of the electron beam we want to 
measure. Clearly the optimum solirce location is a place with 
a small value of the beta function. Using synclirotrou radiation 
from bending magnets this method will only give information 
about the vert,ical I)eani emittance. flcnvcvrr, t.htz radiation from 
undulator allows measurements of bot,h planes. WP will discuss 
such an experiment done at PEP [l I] A plane, harmonic undo- 
lator with Iv, = 26 periods of length X, x 77 mm was used. The 
emitted radiation went through a nlonochrr)rl~ator tuned to the 
fundamental frequency of the undldator, fig. 5. At the end of 
this beam line, L = 58m from the source the size of the photon 
beam was measured. It can be shown [ll] that t,hr natural rms. 
width of the monochrornatized undnlator radiat,ion is given by 
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Figure 5: Rleasuremrnt of the PEP emittance with undulator 
radiation 

‘Ihe pholou beam size due to the finite rrnittance c of the elec. 
tron beam can be obtained by extending the lattice functions 
p(O), u(O) and ~(0) at the source to the screen at the distance L 
where the photon beam size is mtasured by [ 121 

P(L) = p(O) - 2cr(O)C + ?(0)L2. 

This gives for the contribution of the rmittancrs to thr pho- 

ton beam size 0~0 = va and ovp = &m. For the 
horizontal plane there is also a contribution from the dispersion 
at the source point. Subtracting quadratically the contribution 
due to the natural opening angle of the undulator radiation, due 
to the dispersion anii due to the resolution of the measurement 
device from the measured beam size the coutributiou due to thp 
emittances and the rmittances themselve can be determined. For 
the PEP experiment the following results were obtained for the 
uncoupled emittance 60 = t, -t- cY For the normal lattice at 14.5 
GeV the measurement gave 8G um rad while 117 nm rad were ex- 
prcted. For the low emittanre lattice at 8 GeV the measurement 
gave 13.3 11n1 rad while 9.9 nm rad were expected. The discrep- 
ancies brtween measured and calculated values can probably be 
caused by the errors in the lattice functions at the sources. 
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