CLIC Accelerating Structure Development

W. Wuensch
Outline

• Overall objectives and issues
• Accelerating structure design and optimization
• High-power limits – breakdown and pulsed surface heating
• Recent high-power rf test results
Overall objectives and issues

Design, prototypes, high-power tests and subsystem development of CLIC (Compact Linear Collider) 12 GHz accelerating structures.

- **High-gradient, 100 MV/m** – Quantitative investigation of high-power effects like breakdown and pulsed surface heating. Technologies for high gradients like materials and surface preparation. High-power rf testing.

- **Beam dynamics** – Demanding short and long range transverse wakefield specifications. Strong higher-order-mode suppression. Micron alignment tolerances. Integrated optimization.

- **Technical issues** – Vacuum, cooling, manufacture and system integration.

and it’s all heavily coupled
Basic features

- HOM damping waveguides
- Magnetic field concentration – pulsed surface heating
- High electric field and power flow region - breakdown
- Short range wakefields
- Vacuum pumping
- Alignment
- Cooling
- Beam and rf

11.994 GHz, $2\pi/3$ so 8.332 mm period
Design process

Strong interrelation between high-gradient performance and beam dynamics performance through the geometry of the structure.

Example – a structure with a smaller iris aperture will give a higher gradient but also stronger short-range transverse wakefields and thus a higher emittance growth.

There are many more such interrelations so an integrated design procedure has been developed,
Optimization procedure

BD → Bunch population

Structure parameters

N

L_s, N_b

η, P_in, E_s^max, ΔT^max

rf constraints

YES

Cost function minimization

NO

Cell parameters

Q, R/Q, V_g, E_s/E_a, H_s/E_a

Q_1, A_1, f_1

Bunch separation

N_s

Q, R/Q, v_g, E_s/E_a, H_s/E_a

YES

NO
Inputs to the design

Beam dynamics

High-power constraints
\[\text{FoM} = \frac{L_{bx}}{N \cdot \eta} \]

BD optimum aperture: \(\langle a \rangle = 2.6 \text{ mm} \)

Why X-band?
Crossing gives optimum frequency

High-power RF optimum aperture: \(\langle a \rangle / \lambda = 0.1 \div 0.12 \)
We face two main effects, rf breakdown and pulsed surface heating.

- **rf breakdown** – Need to determine gradient as a function of geometry. Local fields appear to give most of the answer but some hints of global effects.

- **Pulsed surface heating** – We know functional dependence but need basic material input data.

Next some latest ideas of the rf breakdown limit, then latest data on pulsed surface heating.
We are going to look at the breakdown trigger from the point of view of power flow.

First by applying the classical Fowler-Nordheim field-emission equations.

Then we will look at the coupling of rf power to field emission sites.
Time constant to reach the copper melting point (cylinders, $\beta=30$)

The tips which are of interest for us are extremely tiny, <100 nm (i.e. almost invisible even with an electron microscope)
Power density at the copper melting point (cylinders, $\beta=30$)

Parameters to attain the melting point of the tip of a Cu cylinder of given radius and $\beta=30$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power density [W/m²]</td>
<td>10^{10} to 10^{12}</td>
</tr>
<tr>
<td>Current density [A/m²]</td>
<td>10^{9} to 10^{11}</td>
</tr>
<tr>
<td>E peak [MV/m]</td>
<td>10^{3}</td>
</tr>
</tbody>
</table>

Power density of about 0.5 W/μm²
Field emission and rf power flow

There are two regimes depending on the level of rf power flow

1. If the rf power flow dominates, the electric field remains unperturbed by the field emission currents and heating is limited by the rf power flow (We are in this regime)

2. If power flow associated with field emission current \(P_{FN} \) dominates, the electric field is reduced due to “beam loading” thus limiting field emission and heating

\[
\Delta T \sim P_{loss} \ll P_{FN} \leq P_{rf}
\]

\[
P_{loss} = \int_V J^2_{FN} \rho \, dv
\]

\[
P_{FN} = \oint_S E \times H_{FN} \, ds \sim E \cdot I_{FN}
\]

\[
P_{rf} = \oint_S E \times H \, ds
\]
\[E \times H = E_0 \cdot H_{0TW}^T \sin^2 \omega t + E_0 \cdot H_{0SW}^T \sin \omega t \cos \omega t \]

\[I_{FN} \cdot E = AE_0^T \sin^3 \omega t \cdot \exp \left(-\frac{62 \text{GV/m}}{\beta E_0 \sin \omega t} \right) \]
What matters for the breakdown is the amount of rf power coupled to the field emission power flow.

\[
P_{coup} = \frac{\int_0^{T/4} P_{rf} \cdot P_{FN} \, dt}{\left(\int_0^{T/4} P_{FN} \, dt \right) \cdot \left(\int_0^{T/4} P_{rf} \, dt \right)}
\]

\[
= C^{TW} E_0 H_0^{TW} + C^{SW} E_0 H_0^{SW}
\]

Assuming that all breakdown sites have the same geometrical parameters the breakdown limit can be expressed in terms of modified Poynting vector \(S_c \).

\[
S_c = E_0 H_0^{TW} + \frac{C^{SW}}{C^{TW}} E_0 H_0^{SW} = \text{Re}\{S\} + g_c \cdot \text{Im}\{S\}
\]

Our new design constraint. Must be less than 6 W/μm² at 100 ns.
Surface field distributions

Now pulsed surface heating

Looking similar to E_s but varies correctly for high and low vg

Figure 2.10: Magnetic field distribution on the cell walls of an HDS CLIC prototype structure. The magnetic field distribution in the figure ($H [A/m]$) is given for 1 MV/m accelerating gradient. For fixed geometry the magnetic field is proportional to gradient, so for 100 MV/m H need to be multiplied by 100. ©Alexej Grudiev, CERN

W. Wuensch, CERN
Pulsed surface heating

Each rf pulse induces a temperature rise, typically 50 °C, in the cavity walls creating a cyclic compressive stress which results eventually in fatigue damage. The stress level is easily calculated but material property data in the time and distance scales, the number of cycles for CLIC is not available.

We have made a trio of experiments to obtain this data.

- **Ultrasonic** – Correct number of cycles, many samples, cheap (but bulk stress, failure criterion different)
- **Laser** – Correct pulse characteristics, thermally induced, available at CERN (few cycles, failure criterion different)
- **rf tests** – What we really need (limited number of cycles, limited number of tests (and facilities), expensive)
Fatigue by ultrasonic experiments
Fatigue by laser experiments

CuZr C15000 40% CW - diamond turned - all data

Roughness Rₚ [µm]

Number of shots

CuZr 0.15 J/cm²
CuZr 0.24 J/cm²
CuZr 0.34 J/cm²
CuZr 0.44 J/cm²

reference surface

240,000 x 0.2 J/cm²
Fatigue by RF experiments at SLAC

Cu-OFE_1 (ΔT ~ 70°C) after N=2*10^6

Cu-OFE_2 (ΔT ~ 110°C) after N=2*10^6

Fatigued zone

RF breakdown zones
Wöhler curves of the test results (Stress vs. N)

- Laser data
- Ultrasonic data
- Copper alloys
- rf data
- Pure copper
- CLIC target

Stress Amplitude [MPa]

Number of cycles [log]

R = (Stress min) / (Stress max)
High-power rf testing

Now we need to put our theory to test!

The work I will describe now is part of an extremely active and productive collaboration between KEK, SLAC and CERN.
T18 – The collaboration structure.
High-power rf test design

Test structure pulse

$\tau_1 = 18.2$ ns, $\tau_2 = 36.9$ ns, $\tau_p = 237.9$ ns, $\tau_p^0 = 196.0$ ns

n.b. no HOM damping in this test structure!

Parameters of unloaded (dashed) and loaded (solid) structure

$P_{\text{load}} = 75.4$ MW, $P_{\text{load}} = 33.8$ MW

$\text{Eff} = 23.1\%$

$\tau_1 = 18.2$ ns, $\tau_2 = 36.9$ ns, $\tau_p = 237.9$ ns

Fields and powers along structure

W. Wuensch, CERN

EPAC, 26 June 2008
T18VG2.4_Disk structure RF process profile begin at Apr.14 2008

The gradient is the average unloaded gradient for the full structure.

First 500hrs, maximum unloaded gradient is 110MV/m

The BKD Rate is normalized to the structure length (29cm).
Second 500hrs, maximum unloaded gradient is 120MV/m

Short pulse higher gradient condition

Pulse shape dependence BKD study.

At 110MV/m with pulse width around 220ns.
After 900hrs RF condition BKD rate has a gradient dependence $\sim G^{32}$ and pulse width dependence $\sim PW^{5.5}$.
Prediction of average unloaded gradient at rect. pulse length of 100ns and BDR=1e-6 based on the results achieved in T53vg3MC: 102.3MV/m at 100ns and BDR=1e-6:

19.5Wu or \(Sc=6.2\text{MW/mm}^2 @ 100\text{ns} \).

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>TD18vg2.4</th>
<th>T18vg2.4</th>
<th>T28vg3</th>
<th>TD28vg3</th>
<th>CLIC_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P/C^* (t_p^P)^{1/3})</td>
<td>19.5Wu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Unloaded Gradient [MV/m]</td>
<td>132</td>
<td>136</td>
<td>110</td>
<td>104</td>
<td>134</td>
</tr>
<tr>
<td>(S_c=6.2\text{MW/mm}^2 @ t_p^P=100\text{ns})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Unloaded Gradient [MV/m]</td>
<td>109</td>
<td>106</td>
<td>105</td>
<td>103</td>
<td>120</td>
</tr>
</tbody>
</table>

Observed value is 124 MV/m. Effect of strong tapering?
Conclusions

• A reasonably coherent and quantitative picture of the effects which limit gradient is emerging.

• The T18 has so far achieved a gradient of 100 MVM/m, which represents a significant step forward towards showing our predictions are accurate and that the gradient goal is reachable.

• A strong international collaboration has formed to develop accelerating structures.

Links:
CLIC homepage: http://clic-study.web.cern.ch/CLIC-Study/
Breakdown workshop: http://indico.cern.ch/conferenceDisplay.py?confld=33140
X-band collaboration meeting: http://indico.cern.ch/conferenceDisplay.py?confld=30911