
 

Abstract 
The next applications of superconducting magnets for 

interaction regions of particle colliders or for fast cycled 
accelerators require dealing with large heat fluxes 
generated or deposited in the coils. Last year [1] we had 
investigated the theoretical potential for a large 
improvement of heat transfer of state of the art Nb-Ti 
cable insulations in superfluid helium, such as the one 
used for the LHC superconducting magnets. In this paper 
we present and discuss new experimental results, 
confirming that a factor of four increase of the allowed 
heat flux from coil to coolant can be obtained with the 
new insulation topology while keeping a sound margin in 
the dielectric performance. 

INTRODUCTION 
Superconducting magnets require, as any electrical 

device, active parts be dielectrically insulated from each 
other and from ground. Though the conductor resistance 
is null in the superconducting status, during transients, i.e 
during magnet energization or during a quench, the 
voltage difference between adjacent cable turns and 
between coil and ground can rise to levels approaching or 
even exceeding the kV range. The large energy stored in 
superconducting magnets makes the event of an electrical 
short circuit a potential hazard not only for the safety of 
the magnet itself but in certain cases for the whole 
accelerator.  

Every turn of the coil has thus to be dielectrically 
insulated from the adjacent turns as well as from the 
metallic components of the magnet. 

In case of the main LHC superconducting magnets, all 
wound with Nb-Ti cables, the insulation is composed of 
helicoidally wound polyimide tapes (figure 1).  

The inter-turn voltage arising in case of a quench is in 
the worst case of about 100 V, corresponding to an 
electric field lower than 500 V/mm, well below the 
dielectric strength of the bulk polyimide tapes. The issue 
is thus to avoid the mechanical punch-through the 
insulation and provide a sufficiently long surface path, 
leading to a design with a first insulation layer composed 
by two 50% overlapped tapes. 

A second, outer, layer is intended to protect the first 
layer and to provide cohesion between coil turns. It 

consists of a single polyimide tape with, on the outer face, 
a thin coat of polyimide adhesive activated by thermal 
treatment; the tape is wound with spacing to create gaps 
for helium to reach the inner layer. 

This insulation scheme proved to be sufficiently robust 
during the manufacture and testing of the main LHC 
superconducting dipoles and quadrupoles. The spaces 
provided by the outer layer tape and the one-sided 
adhesive coating allow increasing the heat transfer 
through the insulation compared to a “sealed” insulation, 
as the one considered for the SSC superconducting 
magnets.  

As a comparison, in figure 2, we plot the temperature 
increase of a cable insulated according to a SSC type and 
to a LHC type insulation with respect to the heating 
power generated in the cable. The data are extracted from 
[2]. The original data in the horizontal axis are here 
represented as power generated in an inner layer cable 
turn per meter of length. As shown in the photo embedded 
in figure 2, we also consider that the heat is evacuated 
only through the inner edge of the cable and not by both 
inner and outer edges. As the experiment reported in [2] 
was done on a sample allowing the heat transfer from 
both cable edges, we divided the original power data by a 
factor of two. The vertical axis represents the relevant 
cable temperature increase when the sample is immersed 
in a superfluid helium bath at 1.9 K. 

IMPROVING THE HEAT TRANSFER  
The heat transfer from the cable to the superfluid 

helium bath can be schematized into two different 
components: one through the open spaces constituting 
micro-channels between the insulation tapes, the other by 
solid conduction across the insulation bulk. The study 
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Figure 1:All-polyimide insulation of LHC main magnets.  

Figure 2: Temperature increase of an insulated cable 
transferring heat into a superfluid helium bath at 1.9 K 
through its inner edge. Data scaled from [2]. 
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DIELECTRIC STRENGTH 
The required interturn breakdown voltage shall be 

sufficiently higher than the 100 V reported previously 
multiplied by a factor taking into account possible 
gaseous environment plus test margins.   

The verification of the dielectric strength of the 
enhanced cable insulation is still preliminary, because the 
exact layout is being trimmed to optimize the wrapping of 
the tapes around the cable and thereafter coil winding in a 
semi-industrial environment. 

Dielectric strength tests were carried out on samples 
composed by two insulated LHC inner layer cable 
sections, 250 mm long. This pair was first submitted to 
the standard bonding cycle as described in the previous 
chapter, consisting in a pressure cycle up to 80 MPa at a 
temperature of 190°C. The two extremities of the sample 
were thereafter separated by an insulating foil and the 
central section, over a length of 160 mm, was submitted 
to a dielectric strength test under a pressure of 50 MPa. 
Discharge values ranged from 8 kV to 30 kV depending 
on the layout and thickness of different alternative 
insulations.      

DEPENDENCY ON APPLIED PRESSURE 
The proposed insulation scheme is based on free 

channels made available for helium. As the heat transfer 
tests described in the previous chapters were executed 
under a moderate pressure (of the order of 30 MPa), we 
designed a test set-up (figure 6) to measure the apparent 
geometrical porosity of the insulation as a function on the 
applied pressure.   

A cured insulated 6 layers stack is encapsulated in a 
sealed mould. Air is injected under pressure through the 
cable strands and evacuated from the stack sides, thus 
through the cable insulation. Samples were made with 
bare cables, with the standard LHC main dipoles 
insulation and the “enhanced” insulation, obtaining the 
data shown in figure 7.  

The test results confirm the large improvement in the 
porosity of the “enhanced” insulation scheme compared 
to the standard one, and show that the channel geometry 
remains stable between 10 and 50 MPa.  These results are 
in line to the observation that, above 10 MPa, coils made 
with such insulations show a relatively high elastic 
modulus, of the order of 10 GPa, indicating that the 
morphology of the insulation wraps remains relatively 
stable.  

CONCLUSIONS 
We presented new experimental data on a new all-

polyimide insulation scheme designed to increase heat 
transfer in Nb-Ti magnets. Such insulation features a 
remarkable permeability to helium thanks to the newly 
introduced “spaced overlap” concept. Measurements 
performed in superfluid helium, when the insulated cables 
are submitted to a pressure of about 30 MPa, show an 
improvement in heat transfer by at least a factor of four 
compared to the standard all polyimide insulation scheme 
used for the main LHC superconducting magnets. The 
dielectric strength of the insulation appears well above the 
required values, providing inter-turn breakdown voltages 
of the order of 10 kV when the samples are tested in air 
submitted to a pressure of 50 MPa. The apparent porosity 
of the insulation does not seem affected by pressure in the 
interval between 10 and 50 MPa.  

Next steps will be the optimization and characterization 
of the insulation scheme for the industrial manufacture of 
superconducting coils and the validation of the heat 
transfer data at higher pressures up to 150 MPa. 
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Figure 6: set-up for measuring apparent porosity to air. 

Figure 7: Radial flow in cables with vertical 
compression of 10 MPa (left plot). Radial flow in cables 
with enhanced insulation, vertical compression of: 10, 
16 and 50 MPa (right plot). 
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