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Abstract

Current and future accelerator design requires efficient
3D space charge computations for high brightness bunches
which should be as precise and fast as possible.

One possible approach for space charge calculations is the
particle-mesh-method, where the potential is calculated in
the rest frame of the bunch by means of Poisson’s equation.

For an efficient solution of this elliptic PDE an appropri-
ate adaptive discretization of the domain is required. Es-
pecially it has to take into account discontinuities in the
distribution of the particles.

The solution method we investigate in this paper is a self-
adaptive multigrid method applying composite grids. To
accomplish this, we use the library Chombo which is be-
ing developed as a framework for adaptive multiresolution
solvers for elliptic and hyperbolic partial differential equa-
tions.

PRELIMINARIES

Poisson’s Equation

We aim to estimate an approximation of the solution
u(x) of Poisson’s equation in the domain Ω ⊆ R3:

−Δ u(x) = f(x), ∀x ∈ Ω. (1)

In the context of space charge calculations u(x) denotes
the potential and f(x) = ρ(x)/ε0 the source term with the
charge density ρ(x) and the vacuum permittivity ε0.

We will use mixed boundary conditions on the boundary
∂Ω of the domain Ω. These will be Dirichlet boundary con-
ditions on ∂ΩD and Robin boundary conditions on ∂ΩR,
given as:

u(x) = gD(x), ∀x ∈ ∂ΩD, (2)

∂u(x)
∂n(x)

= − u(x)
‖r(x)‖ , ∀x ∈ ∂ΩR, (3)

where ‖r(x)‖ denotes the distance from the centre of the
charged sphere.
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Robin’s Boundary Condition

The Robin boundary condition is a special case of an
open boundary condition. It tries to match the solution
on the boundary ∂ΩR of the domain Ω to the surrounding
medium which can be thought of as being infinite.

The Robin boundary condition was selected such that we
get a good approximation of the analytical solution[2] for
the potential of a charged sphere centred at the origin in an
unbounded domain.

USING CHOMBO FOR THE SOLUTION
OF ELLIPTIC PDE’S

Chombo is framework for the development of adaptive
multiresolution (AMR) solvers for elliptic and hyperbolic
partial differential equations. It is being developed and dis-
tributed by the Applied Numerical Algorithms Group of
Lawrence Berkeley National Laboratory[1].

First Results

As an example-implementation Chombo contains the
solver ‘AMRPoisson’. AMRPoisson is a solver for ellip-
tic partial differential equations on composite grids.

This multigrid solver was used to compute the electric
field of a charged sphere of radius 0.8 m with charge 1 μC
inside a cube (2 m×2 m×2 m) with homogeneous Dirich-
let boundary conditions on all faces.

Figure 1: Potential and E-field (Dirichlet boundary)
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Implementing Robin’s Boundary Condition

Because Chombo did not already include in implemen-
tation of Robin’s boundary condition we implemented our
own version for the usage in Chombo’s elliptic solver
AMRPoisson.

Figure 2: Potential and E-field (open boundary)

To assess the correctness of our implementation we com-
puted the potential and the electric field of a charged sphere
for varying step-sizes and compared them with the analyti-
cal solutions.

Figure 3: Computed potential and E-field (Ex)

Figure 3 shows the numerical solution approaching the
analytic solution for decreasing step-sizes. The approxi-
mation of the flux at the boundary interfaces improves for
smaller step-sizes. This also improves the global accuracy.

The effect is less pronounced for the error in the electric
field whose approximation already was quite good.

Figure 4 shows the Ex-component of the electric field
and Figure 5 the difference between the analytic and the
approximated solution in this component.

Figure 4: The Ex-component (open boundary)

Figure 5: The relative error in the Ex-component

As one can see the error is dominated by the discretiza-
tion error at the boundary of the charged sphere. The rela-
tive error is in the order of 10−2. So we assume a relative
tolerance of 10−4 will be a sensible choice as a stopping
criterion for the numerical error in following computations.

RESULTS

After implementing Robin’s boundary condition and as-
serting it’s correctness we went on to solve for the electric
field of an electron bunch in a cavity with rectangular cross-
section.

In the longitudinal (z)-direction we use Robin’s bound-
ary condition. Transversally we assume the cavity to be
made of perfectly electric conducting (PEC) material. It
follows that we can use homogeneous Dirichlet boundary
conditions on the boundaries in x and y direction.

In following computations we use a spheroidal bunch
with 1 mm semi axes in transversal direction (x and y) and
8 mm semi axis in longitudinal direction (z). This spatial
extensions where taken from simulations of the XFEL[3]

The cavity is 80 mm × 80 mm in transversal direction.
In longitudinal direction the domain is 20 mm long.

After implementing the appropriate right hand side
f(x) = ρ(x)/ε0 we can use AMRPoisson to solve for the
electric field.

Grid Refinement

For our first experiments we used Chombo’s automatic
grid refinement. The solid red line in Figure 6 shows the
Ez-component of the E-field along a line through the cen-
tre of the bunch.
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Figure 6: The Ez-component in longitudinal direction

There are some discontinuities in the estimated electric
field. This can be a consequence of the charge not being
fully covered by the finest grid (Figure 7)1.

We therefore prolongated the finer grids towards the
boundary in z-direction. The dotted green line in Figure
6 shows the resulting smoother numerical solution.

Another experiment involved using an ad-hoc formula to
generate successively finer grids. The resulting grid is be-
ing compared with the automatically generated grid in Fig-
ure 9. The dashed blue line in Figure 6 shows the resulting
Ez-component of the E-field.

Benchmarks

We also measured the resource usage for runs with dif-
ferent grids. For comparison table 1 includes a run with
Chombo’s grid statically defined to measure the run-time
overhead of generating the grid. The runtime of Chombo
with statically defined grid is comparable with results from
other adaptive mesh methods[3].

Table 1: Benchmarks

Type of Grid Runtime grid-cells (finest)

Generated Grid 1.63 sec 256,128 (122,304)
Statically Defined 0.95 sec 256,128 (122,304)
Prolongated Grid 1.31 sec 347,776 (200,704)
Geometrical Series 0.96 sec 262,848 (166,208)

CONCLUSION

Out of the box the Chombo-framework is very well
suited for the computation of numerical solutions to Pois-
son’s equation. For high aspect ratio of the bunch the grid
generation routine will have to be augmented. The ad-hoc
algorithm we used looks very promising in that regard.

For space charge calculations with particle-mesh-
methods the large number of cells in the finest grid will
make it difficult to distribute the macro particles. So one
will use a smaller number of refinement levels for this kind
of calculations.

1This can also be an artefact of the visualisation software VisIt[4] us-
ing a nonconservative interpolation for the evaluation of the potential on
the intersecting line.

Figure 7: The automatically generated grid

Figure 8: The fine grids extended to the boundaries

Figure 9: Comparison of the automatically generated (left)
and the grid defined from a geometrical series (right)
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