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Abstract

The bunch-to-bunch evolution of the electron cloud den-
sity can be modeled using a cubic map. The map approach
has been proved reliable for RHIC [1] and LHC [2]. The
coefficients that parameterize the map may be obtained by
fitting from time consuming numerical simulations. In this
communication we derive a simple approximate formula
for the linear coefficient in the electron cloud density map,
along the lines laid in [3], in the presence of a dipole mag-
netic field, and compare the result to numerical simula-
tions, for the LHC.

INTRODUCTION

The build-up of a quasi-stationary electron cloud through
beam induced multipacting processes can be accurately
modeled using sophisticated computer simulation codes
like PEI , POSINST, and ECLOUD.

In [1] it was shown that the evolution of the electron
cloud density from one bunch passage to the next can be
described using a cubic map of the form:

ρm+1 = aρm + bρm + cρm (1)

where ρ is the average electron cloud density between suc-
cessive bunches, and the coefficients a, b and c can be ex-
trapolated from simulations, and are functions of the beam
parameters and of the beam pipe features. Simulations
based on the above map are orders of magnitude faster than
those based on particle-tracking codes. An analytic expres-
sion for the linear coefficient a in (1), valid for weak clouds,
has been derived from first principles in [3], for the straight
sections of RHIC. In this paper we obtain an analytic ex-
pression for a in the presence of a dipole magnetic field,
with specific reference to a toy model of LHC.

We assume Nm electrons in the cloud, uniformly dis-
tributed across the (transverse) section of the beam pipe,
sketched in Fig. 1, at the arrival of bunch m. We com-
pute the average energy gain Ēg of these electrons assumed
initially at rest due to the passage of bunch-m, and the
(average) energy-dependent wall-to-wall flight times in the
strong magnetic field limit.

Next, following [3], we compute the total number Nm+1

of electrons in the cloud at the arrival of bunch-(m+1), by
tracing appropriately the build up of the high-energy (back-
scattering) and low-energy (secondary emission) electrons
produced by successive collisions at the beam pipe wall.
The ratio Nm+1/Nm gives the linear coefficient a, and the

result is compared to numerical simulations obtained using
ECLOUD[4], for the case of an LHC-like dipole.

Figure 1: Schematic view of the evolution of an electron
cloud between successive bunch passages. Courtesy F.
Ruggiero
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Figure 2: LHC beam pipe cross-section geometry, actual
(solid line) and approximate (dashed line).

ELECTRON DYNAMICS

The actual cross section of the LHC beam-screen, is
shown in Fig. 2, together with the (approximate) circular
one used here. In the limit of a large y-directed magnetic
field we may consider only the (transverse) vertical motion
of the electrons (the cyclotron radius of the particle elical
trajectories is very small compared to the transverse beam-
pipe radius Rp). The same approximation is also allowed
in electron-cloud simulation codes. The wall-to-wall flight-
time for an electron with energy E originating at (Rp, θ) is
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accordingly

tf (E, θ) =
2Rp cos θ√

2E/me

(2)

where me is the electron mass, and θ is the polar angle
defined in Fig.2.

The energy gained by an electron at (r, θ) after the
passage of a bunch can be computed under the kick-
approximation [5] as follows:

ΔE(r, θ) = 2mec
2 N2

b r2
e cos2 θ

r2
, (3)

where Nb is the number of electrons in each bunch, and re

is the electron classical radius.
The average energy in a population of electrons uni-

formly distributed across the (transverse) section of the
beam pipe, can be written as:

Ēg =
1

πR2
p

∫ 2π

0

∫ Rp

σr

ΔE(r, θ)rdrdθ, (4)

where we neglect the contribution from electrons trapped
inside the beam core, by setting the lower radial integration
limit at the effective (transverse) beam radius σr.

The secondary emission yield (SEY) includes the con-
tribution of both the true secondary electrons, and the re-
flected ones, denoted as δt(E) and δr(E) respectively; re-
diffused electrons are usually neglected.

We shall assume that the reflected electrons have exactly
the same average energy Ēg as the incident ones, whereas
the true secondary electrons are emitted with an energy
Es � Ēg (typically, Es ≈ 5eV [6]).

The total secondary emission yield and its partial con-
tributions from reflection and true secondary emission [6],
[7] are shown in Fig.3.
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Figure 3: Secondary electron yield as a function of electron
energy. The contributions of the secondary (dashed line),
and backscattered electrons (dotted line) is also shown.

LINEAR MAP COEFFICIENT

To compute the linear term in (1) we follow Iriso and
Peggs [3]. We denote by Nm the number of electrons

uniformly distributed across the (transverse) section of the
beam pipe just before bunch-m passes. After the passage
of bunch-m, these electrons acquire an average energy Ēg .
When these electrons hit the chamber wall, Nmδr reflected
electrons with energy Ēg emerge, and Nmδt secondary
electrons, with energy Es � Ēg are created. Before the ar-
rival of bunch-(m+1), the reflected electrons travel across
the beam pipe and undergo an average number n of colli-
sions with the chamber wall given by:

n =
⌊

tbb

t̄f

⌋
− 1, (5)

where tbb is the time interval between successive bunches,
and

t̄f (E) =
4Rp

π
√

2E/me

(6)

is the angular average of tf (E, θ).
The total number of reflected electrons with energy Ēg

at the passage of bunch-(m + 1) will be accordingly:

N
(ref)
m+1 = Nmδn

r (Ēg). (7)

The secondary electrons originated upon each collision
at the chamber wall, on the other hand, upon further col-
lisions with the chamber wall, will produce secondary as
well as reflected electrons all having the same low energy
Es.

The total number of secondary (low-energy) electrons at
the passage of bunch-(m + 1) will be accordingly given by

N
(sec)
m+1 = Nmδt(Ēg)

n∑

p=1

δp−1
r (Ēg)δkp

s (Es), (8)

where δs = δr + δt and

kp =
⌊

tbb − pt̄f (Ēg)
t̄f (Es)

⌋
, (9)

is the number of collisions undergone by the low-energy
electrons originated after p wall-collisions of the high-
energy population.

The total number of electrons at the passage of bunch-
(m + 1) will be the sum of (7) and (8), viz.:

Nm+1 =Nm

(
δn
r (Ēg)+δt(Ēg)

n∑

p=1

δp−1
r (Ēg)δkp

s (Es)

)
,

(10)
whereby the coefficient of the linear term in the map (1)
can be written in closed form as follows:

a =
Nm+1

Nm
= δn

r (Ēg) + δt(Ēg)δη
s (Es)·

·δ
nη
s (Es)− δn

r (Ēg)
δη
s (Es)− δr(Ēg)

, (11)

where η = t̄f (Ēg)/t̄f (Es) = (Es/Eg)1/2 � 1. In fig.
4 the coefficient a is displayed as a function of the bunch
spacing tbb for different values of the maximum total SEY
δmax, using the machine parameters listed in Table I. For
this same set of parameters, equation (11) is compared to
ECLOUD based simulations in fig. 5.
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Table 1: Parameters used for ECLOUD simulations.

parameter units value
beam particle energy GeV 7000
bunch spacing m 7.48
bunch length m 0.075
number of bunches Nb - 72
no. of particles per bunch N/1010 8 to 14
bending field B T 8.4
length of bending magnet m 1
vacuum screen half height m 0.018
vacuum screen half width m 0.022
circumference m 27000
primary photo-emission yield - 7.98 · 10−4

maximum SEY δmax - 1.3 to 1.7
energy for max. SEY Emax eV 237.125
energy width for secondary e− eV 1.8
energy of secondary e− Es eV 5
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Figure 4: Approximate linear map coefficient a as a func-
tion of bunch spacing, for δmax = 1.3 (yellow), δmax =
1.5, (red) δmax = 1.7 (green).

CONCLUSIONS

An approximate formula has been derived for the linear
coefficient in the map (1) describing the bunch-to-bunch
evolution of the electron cloud density with a dipole mag-
netic field. The results are in acceptable agreement with nu-
merical simulations obtained from ECLOUD, for an LHC-
like dipole. Quick and dirty estimates of the safe regions
in the machine parameter space where electron cloud. A
more complicated (and more accurate) result is obtained
by tracing separately electrons originating at different θ’s,
and averaging the final θ-dependent linear coefficient. This
more general case will be discussed elsewhere.
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Figure 5: Comparison of the linear map coefficient a de-
rived using ECLOUD simulations (bars) and using the an-
alytic calculation (lines with the same color), as a func-
tion of the bunch population N for δmax = 1.3 (yellow),
δmax = 1.5, (red) δmax = 1.7 (green).
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