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Abstract 
The focus of this work is to show a full analytical 

expression to determine relevant equilibrium quantities of 
a magnetically focused and high-intensity charged particle 
beam when evolving in a linear channel. Through the 
current approach, some intermediate steps of our original 
hybrid model which have to be solved numerically now 
can be eliminated, leading to the obtainment of a full 
analytical expression. This expression relates initial beam 
parameters with those obtained at equilibrium, allowing 
that the fraction of halo particles ݂ can be evaluated. As a 
consequence, through the developed model, beam 
quantities like the envelope and emittance can be 
naturally determined. This is important in the accelerator 
engineering, since halo characteristics is a factor to be 
considered in the design of its confinement structure. For 
validation, full self-consistent ܰ-particle beam numerical 
simulations have been carried out and its results 
compared with the predictions supplied by the full 
analytical model. The agreement is shown to be nice as 
with the simulations as with the hybrid numerical-
analytical version of the model. 

I TRODUCTIO  
As charged beams evolve inside the focusing channel, 

some small quantity of its particles are ejected, 
developing large amplitude orbits much different from 
those plasma-like orbits performed by the remaining 
particles. Although small, its contribution over the 
calculation of statistically-averaged beam quantities 
becomes to be important so more as the equilibrium 
approaches. At equilibrium, observing the beam 
configuration space, it is possible to detect that the 
initially spatial-limited particle population is now 
surrounded by a tenuous particle population. This tenuous 
population is dispersed in such a way that its influence 
over the beam cannot be neglected anymore, being named 
as halo in beam physics. This behavior is observed in self-
consistent ܰ-particle beam numerical simulations [1] as 
well as in the experiments [2]. In this way, halo formation 
has become a subject extensively studied in beam physics, 
and its effects over the infrastructure of the accelerator a 
problem to be mitigated in engineering. 

Macroscopically, the particle ejection commented 
above is perceived as the change of two statistical-
average quantities of the beam distribution during its 
excursion inside the focusing channel. One is the beam 

envelope ݎ௕, which appreciates an important decay, and 
the other is the beam emittance ߳, which experiences 
additionally a not negligible growth. The beam envelope 
and emittance have an inverse dynamical behavior (the 
first decay, the second grow) not for coincidence, but 
because they are concatenated by a constraint: energy 
conservation. The beam distribution evolves assuming 
that its overall energy remains constant. In this way, if the 
beam envelope decays (potential energy decreases), then 
emittance must grow (kinetic energy increases), because 
the overall energy inevitably conserves. The striking 
characteristic observed here is that almost all beam 
kinetic energy is carried by a small amount of particles. 
Since emittance and kinetic energy are directly connected, 
the tenuous population has therefore great importance in 
the emittance growth during the focusing process. 

This progressive increasing of beam kinetic energy is 
proportioned by the interaction of individual particles 
with the mismatched beam. As beam propagates inside 
the focusing channel, its envelope mismatch induces the 
formation of large resonant islands [3] beyond its border. 
Individual particles are captured by this resonance [4], 
coupling their motion with the mismatched beam. The 
resonant coupling — fruit of the particle-beam interaction 
— is the way that energy exchange occurs: potential 
energy of the beam oscillatory motion is converted into 
kinetic energy that supplies the chaotic movement of the 
individual particles. Equilibrium is reached when this 
energy transfer mechanism ceases. Together, all other 
commented statistically-averaged quantities also stabilize. 
At this point, it is of interest to known which values 
achieve the envelope ݎ௕ and emittance ߳, not only for 
physics purpose but also for engineering aspects, 
associated to the design of the confinement structure. 

The system considered here is a high-intensity beam of 
charged particles, focused by a constant magnetic field in 
a linear propagation channel. The initial beam density is 
considered homogeneous, being described by a step-
function profile ݊(ݎ, ݏ = 0) = ൜ܰ/ݎߨ௢ଶ,  for 0 ≤ ݎ ≤ ௕ݎ ௕0,  forݎ < ݎ ≤ ௪ݎ , (1)

where ݎ௪ is the conduct pipe location and ݎ௢ designates 
the initial beam mismatch. Azimuthal symmetry is also 
assumed for simplification. 

THE DEVELOPED MODEL 
In Figure 1, it is shown several snapshots of the beam 

transverse phase-space after equilibrium is attained. It is 
possible to observe that the equilibrium is directly 
associated to the invariance of phase-space topology. 
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Particle orbits are defined in such a way that they occupy 
a well-defined and limited region in the phase-space. In 
each of these regions, the number of particles remains 
almost constant. This is the reason by which statistically-
averaged quantities of the beam distribution stabilize at 
the equilibrium. In average, the microscopic states 
(composed by the coordinates of each particle in the 
phase-space) do not considerably change. Since, 
macroscopic quantities are just averages over the 
microscopic states, thus envelope and emittance do not 
experience any alteration in its values. The results 
obtained in Figure 1 are from self-consistent ܰ-particle 
beam simulations using Gauss’ Law [1]. 

 
Figure 1: Snapshots of the beam transverse phase-space at 
its equilibrium for an initial envelope mismatch of ݎ௢ = 1.5. Phase-space topology invariance is attained. 
Phase-space portraits captured at (a) ݏ = 547,8, (b) ݏ = 599,7, (c) ݏ = 798,7, and (d) ݏ = 997,6. 

The beam phase-space at equilibrium can be 
decomposed in three regions: a horizontal thin branch, 
composed by very cold particles, a cloud around the 
horizontal branch, made up of warm particles, and by a 
semicircular branch, populated by extremely hot particles. 
Although warm particles have fundamental role in halo 
formation, thus important for the description of the beam 

transient behavior, their contribution at equilibrium can be 
neglected. As an approximation, they can be considered 
as cold particles [5]. In this way, it is possible to associate 
the cold particles to the core as well as the hot ones with 
those that compose the halo. In Figure 1(a), the cold, 
warm, and hot particles appear detached in respectively 
blue, green, and red. 

The regular geometry of each previously commented 
regions of the beam phase-space can be directly converted 
to analytical expressions. At equilibrium, beam density 
assumes [6] ݊(ݎ) = ቐ݊௖(ݎ) + ݊௛(ݎ),  for  0 ≤ ݎ ≤ ௖ݎ  for  ,(ݎ)௖݊௛ݎ < ݎ ≤ ௛ݎ  ௛0,  forݎ < ݎ ≤ ௪, (2)ݎ

where ݊௖ and ݊௛ are respectively the particle density for 
the core and the halo, ݎ௖ is the core size and ݎ௛ is 
associated with the size projected by the semicircular 
branch over ݎ axis. 

The core population at equilibrium can be still 
represented as step-function profile [6] ݊௖(ݎ) = (1 − ௖ଶ, (3)ݎߨ/ܰ(݂
now with ݎ௖ < ݂ ௢ and expressed by fractionݎ ≡ ௛ܰ/ܰ 
through the relation ܰ = ௖ܰ + ௛ܰ. The halo population 
pertaining to the semicircular branch follows [6] ݊௛(ݎ) = ௛ଶݎඥݎଶߨ݂ܰ − ଶ. (4)ݎ

Inserting equations (3) and (4) into equation (2) the 
equilibrium is completely defined. With the beam density, 
it is possible to determine its self-consistent generated 
electric field ۳ by the means of the following Maxwell 
equation [7] ∇ ∙ ۳ = − ܭܰߨ2 (5) .(ܚ)݊

in which ܭ is the beam perveance. Doing that, one 
obtains the expression for ۳ 

(ݎ)ܧ =
۔ۖۖەۖۖ
−ۓ (1 − ௖ଶݎݎ(݂ − ݎߨ2݂ tanିଵ ቆ ௛ଶݎඥݎ − ଶቇݎ , for 0 ≤ ݎ ≤ ௖ݎ

− ݎߨ2݂ tanିଵ ቆ ܴඥݎ௛ଶ − ଶቇݎ − (1 − ݎ(݂ , for ݎ௖ < ݎ ≤ −௛ݎ ݎ1 , for ݎ௛ < ݎ ≤ ௪ݎ
. (6)

The overall beam energy can be computed at any 
instant of time ݏ through [6] ݎ௕ଶ(ݏ)2 − 14 + ℰ(ݏ) = ܧ = (7) ,ݐ݊ܽݐݏ݊݋ܿ

in which ℰ is the average self-field beam energy [7] ℰ(ݏ) = ܭߨ14 න|۳|ଶ݀(8) .ܚ

The beam envelope ݎ௕ at equilibrium assumes in the 
semicircular approximation the form [6] ݎ௕ଶ = (1 − ௖ଶݎ(݂ + ௛ଶ. (9)ݎ݂

Inserting equations (8) and (9) into equation (7), the 
beam energy at equilibrium is obtained. Proceeding in the 
same form with the initial density of equation (1), it is 
possible also to evaluate energy at the beginning. It 
becomes possible thus to connect both recently obtained 
expressions, generating an equation for fraction ݂. This 
equation is a second-order polynomial [6] 
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ଶ݂ܣ + ݂ܤ + ܥ = 0, (10)
which the desired solution resides between 0 ≤ ݂ ≤ 1. 

The average self-field beam energy depends on the 
square value of the electric field. For this reason, an exact 
analytical solution to the coefficients of the polynomial in 
equation (10) is difficult. Nevertheless, with the following 
approximation for the inverse tangent [8] tanିଵ ቆ ௛ଶݎඥݎ − ଶቇݎ ≈ 2(௛ݎ/ݎ)3 + ඥ1 − ଶ, (11)(௛ݎ/ݎ)

after exhaustive algebra the coefficients ܤ ,ܣ e ܥ of the 
polynomial in equation (10) can be written as [5] ݎ)ܣ௖, (௛ݎ ≈ ߫ + ln൫ݎ௖ଶ/ݎ௛ଶ൯ − ሾ72 ln(2/3) + 24ሿ/ߨଶ − ,௖ݎ)ܤ1/2 (௛ݎ ≈ −߫ + 2 ln൫ݎ௖ଶ/ݎ௛ଶ൯ + 1 + 2൫ݎ௖ଶ − ,௢ݎ)ܥ௛ଶ൯ݎ (௖ݎ ≈ 1 − ௖ଶݎ2 + ௢ଶݎ + ln(ݎ௖ଶ/ݎ௢ଶ) . (12)

in which ߫ is the auxiliary equation below ߫(ݎ௖, (௛ݎ = − ቈ48ݎ௛ଶ√3ݎߨ௖ଶ + ߨ3√16 ቉ tanିଵ ቎√3ݎ௛3ݎ௖ ቌ1 + 2ඨ1 − ௛ଶቍ቏ݎ௖ଶݎ
+ ቈ84ݎ௛ଶݎ௖ଶ + ߨ24 ቉ sinିଵ ቌඨ1 − ௛ଶቍݎ௖ଶݎ
− 48 − 12ඨ1 − ௛ݎ/௖ݎߨ௛ଶݎ௖ଶݎ + 24√3 − ௛ଶݎ/௖ଶݎ42 + 8√32 . 

(13)

Comparison between the inverse tangent and its 
approximation of equation (11) is shown in Figure 2. 
There is a visible divergence between both expressions 
just as ݎ/ݎ௛ → 1. 

 
Figure 2: Comparison between the inverse tangent 
function and its approximation adopted to solve 
analytically the integrals. 

RESULTS 
The results obtained with the model through both the 

numerical solution and the quasi-exact analytical solution 
is shown in Table 1. Also in this table, the results 
provided by the full ܰ-particle numerical simulations is 

shown. The comparison of the results occurs for the 
fraction of halo particles ݂, the envelope ݎ௕, and the 
emittance ߳ at equilibrium. The columns explicit the 
results for each analyzed mismatch ݎ௢. The first two rows 
show the beam phase-space parameters at equilibrium, 
necessary to evaluate the previously commented beam 
quantities. Results obtained from the quasi-exact 
analytical model is almost the same that the ones 
computed by numerical solution of equation (10). 

Table 1: The results obtained through the developed 
model (numerical and quasi-exact analytical solution) and 
its comparison with those calculated from full self-
consistent ܰ-particle beam simulations. ݎ௢ = 1.0 ௢ݎ = ௢ݎ 1.2 = ௢ݎ 1.4 = ௢ݎ 1.6 = ௖ݎ 1.8 = 1 ≅ 1.05 ≅ 1.10 ≅ 1.10 ≅ ௛ݎ 1.20 = 0 ≅ 1.68 ≅ 1.88 ≅ 2.00 ≅ 2.13 

Semicircular approximation – Numerical Solution ݂ = 0 ≅ 0.00566 ≅ 0.04666 ≅ 0.08098 ≅ ௕ݎ0.13185 = 1 ≅ 1.03474 ≅ 1.11179 ≅ 1.21944 ≅ 1.33770߳ = 0 ≅ 0.27512 ≅ 0.54021 ≅ 0.85104 ≅ 1.18855
Semicircular approximation – Analytical Solution ݂ = 0 ≅ 0,00557 ≅ 0,04680 ≅ 0,08118 ≅ ௕ݎ0,13212 = 1 ≅ 1,03475 ≅ 1,11194 ≅ 1,21967 ≅ 1,33801߳ = 0 ≅ 0,27515 ≅ 0,54067 ≅ 0,85168 ≅ 1,18946

Self-consistent Numerical Simulations ݂ = 0 ≅ 0.02080 ≅ 0.05181 ≅ 0.08353 ≅ ௕ݎ0.13286 = 1 ≅ 1.02893 ≅ 1.08063 ≅ 1.16717 ≅ 1.28389߳ = 0 ≅ 0.23535 ≅ 0.45312 ≅ 0.76491 ≅ 1.12057
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