A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhang, Y.

Paper Title Page
WEPC060 Studies on the Beam Current Dependent Phenomena in the BEPC-II Storage Rings 2130
 
  • Q. Qin, N. Huang, W. B. Liu, Y. D. Liu, Y. M. Peng, J. Qiu, D. Wang, J. Q. Wang, N. Wang, X. H. Wang, Y. Wei, X. M. Wen, J. Xing, G. Xu, C. H. Yu, C. Zhang, Y. Zhang, Z. Zhao, D. M. Zhou
    IHEP Beijing, Beijing
 
  The upgrade project of the Beijing Electron Positron Collider (BEPC-II) has been being commissioned since Nov. 2006. Besides the commissioning of the luminosity, which is expected to be 100 times higher than the BEPC, the BEPC-II also provided beam to the synchrotron radiation users as a light source during these two years. Some beam current dependent phenomena, such as bunch lengthening, single beam instabilities, blow-up in collision, etc., in both collision and synchrotron radiation modes are observed in the machine performance. In this paper, some observations and analyses on these phenomena are given.  
WEPP049 Advances on ELIC Design Studies 2632
 
  • S. A. Bogacz, P. Chevtsov, Y. S. Derbenev, P. Evtushenko, M. Hutton, G. A. Krafft, R. Li, L. Merminga, J. Musson, B. C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  • J. Qiang
    LBNL, Berkeley, California
  • H. K. Sayed
    Old Dominion University, Norfolk, Virginia
 
  An electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams highly polarized is essential for exploring the new QCD frontier of strong color fields in nuclear and precisely imaging the sea-quarks and gluons in the nucleon. A conceptual design of a ring-ring collider based on CEBAF (ELIC) with energies up to 9 GeV for electrons/positrons and up to 225 GeV for protons and 100 GeV/u for ions has been proposed to fulfill the science desire and to serve as the next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. Here, we summarize recent design progress for the ELIC complex with four interaction points (IP); including interaction region optics with chromatic aberration compensation scheme and complete lattices for the Figure-8 collider rings. Further optimization of crab crossing angles at the IPs, simulations of beam-beam interactions and electron polarization in the Figure-8 ring and its matching at the IPs are also discussed.  
MOPC136 Beam Bunch Leakage and Control in the SNS Ring 391
 
  • Y. Zhang, J. Galambos
    ORNL, Oak Ridge, Tennessee
 
  In recent neutron production operations at SNS, beams contaminated the longitudinal extraction gap of the accumulator ring due to the limitation of the beam choppers. It caused significant beam loss and activation in the ring and in the extraction beam line. From simulations with computer models and in experimental measurements, properly utilizing the ring RF systems with additional storage turns after the beam accumulations in the ring effectively reduced beam loss in the SNS accelerator systems. Simulations and beam measurement results will be discussed  
THPP044 Experience with the SNS SC Linac 3461
 
  • Y. Zhang, A. V. Aleksandrov, C. K. Allen, I. E. Campisi, S. M. Cousineau, V. V. Danilov, J. Galambos, J. A. Holmes, D.-O. Jeon, S.-H. Kim, T. A. Pelaia, A. P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  The SNS SC linac (SCL) is designed to deliver 1 GeV, up to 1.56 MW pulsed H- beams for neutron production. Beam commissioning of the SNS accelerator systems completed in June 2006 with the maximum linac output beam energy approximately 952 MeV. In 2007, we successfully tuned the SCL for 1 GeV beams during a test run, and the SNS linac achieved its design energy for the first time. During the linac tune-up, phase scan signature matching, drifting beam measurement as well as linac RF cavity phase scaling was applied. In this paper, we will introduce the experiences with the SCL, and we will also briefly discuss beam parameter measurements.


 
THPP073 Performance of the SNS Front End and Warm Linac 3530
 
  • A. V. Aleksandrov, C. K. Allen, S. M. Cousineau, V. V. Danilov, J. Galambos, J. A. Holmes, D.-O. Jeon, T. A. Pelaia, M. A. Plum, A. P. Shishlo, M. P. Stockli, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60 Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5 MeV beam from the Front End is accelerated to 86 MeV in the Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. With the completion of beam commissioning, the accelerator complex began operation in June 2006 and beam power is being gradually ramped up toward the design goal. Operational experience with the injector and linac will be presented including chopper performance, longitudinal beam dynamics study, and the results of a beam loss study.  
THPP085 Status of the SNS Ring Power Ramp Up 3560
 
  • M. A. Plum, A. V. Aleksandrov, C. K. Allen, S. M. Cousineau, V. V. Danilov, J. Galambos, J. A. Holmes, D.-O. Jeon, T. A. Pelaia, A. P. Shishlo, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  Beam was first circulated in the SNS ring in January 2006. Since that time we have been working to raise the beam power to the design value of 1.4 MW. In general the power ramp up has been proceeding very well, but several issues have been uncovered. Examples include poor transmission of the waste beams in the injection dump beam line, cross-plane coupling in the ring to target beam transport line, and higher-than-expected peak densities in the ring to target transport. In this paper we will discuss these issues and present an overall status of the ring and the transport beam lines.