A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pivetta, L.

Paper Title Page
MOPC080 Status of the FERMI@Elettra Photoinjector 247
 
  • M. Trovo, L. Badano, S. Biedron, D. Castronovo, F. Cianciosi, P. Craievich, G. D'Auria, M. B. Danailov, M. Ferianis, S. V. Milton, G. Penco, L. Pivetta, L. Rumiz, D. Wang
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Eriksson, D. Kumbaro, F. Lindau
    MAX-lab, Lund
 
  The new FERMI@Elettra photoinjector is presently undergoing high-power testing and characterization at MAX-Lab in Lund Sweden. This effort is a collaboration between Sincrotrone Trieste, MAX-Lab and UCLA. The 1.6-cell RF gun cavity and the focusing solenoid were successfully designed and built by the Particle Beam Physics Laboratory at UCLA, delivered to Sincrotrone Trieste at the beginning of 2008, and installed in the linac tunnel at MAX-Lab. Use of the MAX-Lab facility will allow the FERMI project to progress significantly with the photoinjector while waiting for the completion of the new linac building extension at Sincrotrone Trieste. We report here on the high-power conditioning of the RF cavity and the first beam tests. Furthermore, a preliminary characterization of the 5 MeV beam will also be presented.  
TUPP009 Implementation and Operation of the Elettra Booster Control System 1544
 
  • M. Lonza, F. Asnicar, L. Battistello, S. Fontanini, V. Forchi', G. Gaio, F. Giacuzzo, E. Mariotti, R. Marizza, R. Passuello, L. Pivetta, C. Scafuri, G. Scalamera, G. Strangolino, D. Vittor, L. Zambon
    ELETTRA, Basovizza, Trieste
 
  A new injector based on a 100 MeV linac and a 2.5 GeV booster synchrotron has been built and commissioned at Elettra to provide full energy and top up injection into the storage ring. The booster replaces the 1.2 GeV linac that will be used for the new 4th generation light source FERMI@Elettra currently under construction at Elettra. A new architecture has been adopted for the booster control system based on the Tango control system software. The implementation of the control system and the tools developed to meet an aggressive commissioning time schedule are presented. The experience gained during the operation of the booster is also discussed.